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INTRODUCTION 

The group of elements with atomic numbers 39 and 57 

through 71 are commonly known as the rare earths. At present 

the greatest demand for pure rare-earth elements, other than 

lanthanum, cerium, and perhaps neodymium, is for fundamental 

scientific research. Since the atoms of each of the respec­

tive rare-earth elements differ from each other primarily in 

the number of electrons contained in the shielded 4f subshell 

and the number of protons in the nucleus, their unique physi­

cal find chemical properties, such as ionic size, make them 

valuable tools for testing many of the theories which have 

been proposed in chemistry and physics. 

The separation of the lanthanide elements from each other 

has long been a classic problem in chemistry. Because of the 

inherent similarities of the adjacent rare-earth ions in 

aqueous solution of a given oxidation state, most techniques 

not based upon oxidation or reduction are commonly slow, 

tedious, and fractional in character. Techniques Involving 

more than a single oxidation state are rapid and yield pure 

products, but they are limited to a few members of the series. 

Prior to 1947 the separation of rare earths except for that 

of lanthanum and those having more than one oxidation state 

was so difficult and tedious that only small quantities were 

obtained. In recent years, however, ion-exchange techniques 

have been applied with great success to this separation problem 
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and all of the rare earths are available in kilogram or larger 

quantities with a purity of 99.99 per cent or greater. Even 

though it is commercially more economical to use liquid-liquid 

extraction for rough separations of rare earths, it is still 

necessary to use the ion-exchange procedure in most cases to 

obtain the individual rare earths in high purity. 

The ion-exchange methods which have proven most success­

ful involve the use of an organic chelating agent in the 

eluant. The successful separation of the rare-earth elements 

by this method depends for the most part upon the differences 

in the stabilities of the complexes formed between the indi­

vidual rare earths and the chelating agent. 

The chelating agent generally used for the economical 

separation of the rare earths is ethylenediaminetetraacetlc 

acid (EDTA). The retaining bed which has worked the best with 

EDTA is the pure cupric ion bed (l, 2). 

As is often the case, during the early work on such a 

process when the product is in great demand, the technology 

resulting in the actual separation of the rare earths has ad­

vanced more rapidly than the theory of the ion-exchange elu-

tion mechanism. Approximate conditions have been worked out 

for the best separation of the rare earths; however, a more 

detailed knowledge of the elution system was desirable in 

order to determine the optimum conditions for the separation 

of rare-earth mixtures of various compositions. 
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In the separation of rare earths at this laboratory, it 

was found that ammonium was "leaking" from the eluant through 

the "pure" copper retaining bed. By keeping the copper re­

taining bed short and constantly supplying fresh copper re­

taining beds, the build-up of ammonium in the bed could be 

kept to a minimum and a stable system could be achieved. When 

the author investigated the elution of neodymium band behind 

a pure copper retaining resin bed, It was found that the ammo­

nium ion leaked through and built up in the copper band in 

such a way that the band's equilibrium with the eluate was 

constantly shifting (3). This In turn causes the equilibrium 

between the resin and the solution phase of the rare-earth 

band to shift. The rate of transfer of materials at the 

various boundaries was so slow that the bands would not come 

to equilibrium or to a steady state by the time the band had 

traveled three band lengths. By using a homogeneous copper-

ammonium-hydrogen band Instead of the pure copper resin, it 

was possible to achieve "flat" equilibrium type neodymium 

bands in this distance• However, there was a tendency for the 

retaining bed to very slowly shift in composition. On the 

other hand, when a homogeneous copper-hydrogen resin was used 

rather than the pure copper retaining bed, the high concen­

tration of the hydrogen in the copper-hydrogen band precip­

itated EDTA in the neodymium band which caused some diffi­

culty. However, the copper-hydrogen band should lend itself 
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to the formation of s stable equilibrium retaining band if the 

precipitation of the EDTA in the neodymium band could be over­

come. In order to take advantage of the good retaining char­

acteristics of the copper-hydrogen band and to remove the pre­

cipitation difficulty, a short copper-ammonium-hydrogen band 

was used between the copper-hydrogen retaining bed and the 

rare-earth band. 

The purposes of this thesis are to investigate quantita­

tively the use of a buffering band interposed between the re­

taining bed and the rare-earth band and to study the mass 

transport of the atomic species across the band boundaries. 

It was hoped that conditions could be established by using 

appropriate buffer bands so that flat-type elution curves 

could be obtained, and at the same time the composition of 

the final retaining bed could be varied with respect to a 

given eluant. This objective was achieved. Also, it should 

be possible to calculate the behavior of such a systen theo­

retically by means of the mass-action, charge-balance, and 

material-balance equations. The possibility of transporting 

atomic species through the boundaries gives the system an 

extra degree of freedom and a corresponding greater flexibil­

ity. This theory is developed In the thesis. 

Since the apparent equilibrium constants involved in the 

copper-ammonium-hydrogen and neodymium-ammonium-hydrogen bands 

are needed in the theory, some rough equilibrium studies were 
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made for the sake of comparison. 

It was hoped that the more precise knowledge gained about 

this elutlon system would be helpful in the study of other 

elutlon systems. 

The resin used in these investigations was a sulfonated 

polystyrene-dlvlnylbenzene co-polymer. Its sole ion-active 

groups were the sulfonic acid groups. The resin phase of the 

cation-exchange system designated above consists essentially 

of a porous hydrocarbon network linked and crosslinked by 

short aliphatic chains. 

When a resin is initially placed in water, the polymer 

network expands as the ions become hydrated and as water is 

adsorbed due to the osmotic forces. The extent of the swell­

ing will finally be limited by the network which hold the 

polymer together. A considerable amount of work has been re­

ported in regard to the volumes of resin observed under vari­

ous conditions (4, 5, 6, 7, 8, 9). The volume occupied by the 

resin depends on the ions within the resin, the type of resin, 

and the concentration of the solution in contact with the 

resin. However, the change in volume with concentration of 

the external solution is quite small when this concentration 

of the electrolyte is low. 

Solvent and neutral molecules can freely migrate into and 

through the polymeric network. Positive ions from an external 

solution can diffuse through the resin as long as electrical 
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neutrality Is maintained. Whenever a cation enters the resin 

an equivalent amount of positive ion must be displaced or it 

must be accompanied by an equivalent amount of anion. How­

ever, since the activity of the salt within the resin must 

equal the activity of the salt in the external solution, the 

high concentration of cations within the resin will effective­

ly prevent the solution anions from entering the resin phase 

when the ionic strength of the external solution is low 

(Donnan equilibrium). 

When a wet swollen hydrogen form resin is immersed in a 

solution containing ammonium chloride, an Important reaction 

takes place in that an exchange would occur with hydrogen ion 

being displaced from the exchanger by an equivalent amount of 

ammonium ions. This exchange phenomenon is the most useful 

property exhibited by these high molecular weight polymers. 

A metathetical reaction can be written for the cations 

in the exchange equilibrium, 

where the subscripts "o" and "i" refer to the Ions being 

outside and inside the resin phase. The selectivity coeffi­

cient K1 has been defined as follows : 

where the quantities are the appropriate stoichiometric con-

n A** + m B+n n Aj® + m B+Qn (1) 

( 2 )  
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centrations of the ions in the two equilibrium phases. This 

is really a mass-action constant or an apparent equilibrium 

constant where the terms are expressed in concentrations 

rather than activities. This constant will change somewhat 

with the ionic concentration of the eluate and the composi­

tion of the resin since it is a function of the activity 

coefficients of the ions and the true equilibrium constant. 

This constant is best determined experimentally for the con­

ditions involved. 

The selectivity coefficient as defined has little meaning 

unless accompanied by a statement as to the composition of the 

resin (9, 10, 11, 12, 13, 14, 15, 16). Other factors remain­

ing constant, the selectivity coefficient diminishes slightly 

with the ionic strength of the external solution when it is 

dilute (13, 16, 17). There have been reports of actual re­

versal of the selectivity at very high concentration. While 

the total ionic strength was a minor variable with the unl-

unlvalent systems, it may or may not be a major variable if 

the exchanges involve ions of differing charges (18, 19, 20, 

21). There is general agreement that the dependence of the 

selectivity coefficient on temperature is small (13, 14, 17, 

22, 23). 

The more highly charged ions are preferred by the resin 

over those of lesser charge. For ions of the same charge, 

those with the smaller hydrated radii have the greater affln-
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ity for the resin (9, 22, 23, 2.4). 

There are a number of conflicting views on how the true 

thermodynamic constants should be expressed and on the rela­

tionship between the apparent constant and the true thermo­

dynamic constant (25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 

36). The mathematical developments of the various theories 

are quite different. Even though the mathematical development 

of the theory is the same, there may be disagreement over 

which of the terms in the development are most Important. For 

example, there is disagreement over the Importance of the 

osmotic pressure inside the resin for the Glbbs-Donnen 

development. Therefore, It is better to determine the selec­

tivity coefficient under the conditions where the coefficient 

will be used rather than to try to calculate the coefficient 

from data obtained under other conditions. 

In addition to the selectivity coefficients, the four 

stability constants of EDTA are required in the mathematical 

treatment of the neodymium-ammonium-hydrogen bands and copper-

hydrogen bands. Therefore, it was necessary to determine 

these constants at the appropriate Ionic strength (0.015-

0.02) .  
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REVIEW OF LITERATURE 

One problem in which ion exchange has been very useful is 

the separation of the rare earths. The early method of sep­

arating the rare earths by means of ion exchange was developed 

at Ames (37, 38, 39, 40, 41) and elsewhere (42, 43, 44, 45, 

46, 47, 48, 49). This method consisted of eluting the rare 

earths down an ion-exchange column which was initially in the 

hydrogen cycle with an approximately 5 per cent citric acid-

ammonium citrate solution. The elution curve of each indi­

vidual rare earth was "bell shaped". The different rare 

earths moved down the column at different rates so that they 

gradually separated from each other. However, to separate 

macro quantities of the rare earths the bands had to travel 

a great distance and a considerable fraction of the bands 

overlapped. This method was particularly successful for sep­

arating radioactive tracers where adsorbed bands were very 

short. 

Spedding and his co-workers conducted numerous experi­

ments in which a rare-earth band was eluted down a resin bed 

with a 0.1 per cent citric acid solution, adjusted to a pH be­

tween 5.0 and 8.0 with ammonium hydroxide (50, 51, 52, 53, 

54, 55). A resin bed in the hydrogen form was used to retain 

the rare-earth band. If several Individual rare-earth species 

are present in the originally absorbed band, they tend to 

separate into individual bands which are compact and follow 
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one another "head to tall" as the total band Is eluted down 

the column. After an equilibrium state has been reached, each 

rare earth has a rectangular elution curve with fairly sharp 

boundaries between each pair of adjacent rare earths. This 

elution system will be discussed in the Theoretical Discus­

sion along with the system studied in this thesis (56, 57). 

An application of the theoretical and practical knowledge 

of the operation of ion-exchange columns was published by 

Spedding et al. (58, 59). One of these, a practical separa­

tion of the nitrogen isotopes and N*5, has been brought 

about by methods similar in principle to those used in the 

rare earth separations. Ammonium hydroxide is reacted with a 

hydrogen ion bed within a column to form an ammonium ion band. 

This band is eluted down hydrogen-ion resin beds with an 

eluting solution of sodium hydroxide. The sodium hydroxide 

reacts with the ammonium ion on the resin to form ammonium 

hydroxide and sodium saturated resin. Then, the ammonium 

hydroxide in solution moves down the ammonium band and reacts 

with the hydrogen ion on the resin at the leading edge of the 

band to form adsorbed ammonium ion. Since the equilibrium 

constants are large for both the reaction at the leading 

boundary and the rear boundary, these boundaries are sharp 

and the ammonium band is well defined. The two isotopes of 

nitrogen are differentiated because the distribution coeffi­

cients of these two isotopes are slightly different for this 
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system. concentrates at the back end of the adsorbed 

band and N14h£ at the front end of the adsorbed band. 

Several articles have been written by Spedding, Schwarz-

enbaoh, Powell, and Wheelwright on the stability of the rare-

earth-EDTA complexes and the separation of the rare earths by 

ion exchange using EDTA. Preliminary studies (60) indicated 

that EDTA could be used in the separation of the rare earths. 

Then stability constants of the complexes formed between the 

rare-earth metal ions and the anion of ethylenediaminetetra-

acetic acid were measured at a temperature of 20° C and the 

ionic strength of 0.1 by two Independent methods (61, 62). 

The two methods were shown to supplement each other, one being 

more accurate for the lighter rare earths and the second 

method more accurate for the heavy rare earths. The first, 

the potentlometric method, involved the formation constants 

of copper with the anion of ethylenediaminetetraacetic acid 

and of copper with the trihydrochlorlde of /&, ^ , /<g>"-

trlamlnotriethyleneamine. The second method utilized the 

polarographic determination of the amount of free copper in 

the presence of both the copper and rare earth-EDTA complexes. 

In other studies by Spedding j|l., some success was 

obtained using a ferric ion in the retaining bed (63). How­

ever, experiments with long resin beds, using solutions of 

EDTA, have indicated that ferric ions are not the most desir­

able for use In the retaining bed. When iron was used, it was 



www.manaraa.com

12 

found that the pH range was limited. If the solution were too 

acidic, the acid EDTA tended to precipitate in the interstices 

of the resin bed, and if it were too basic, hydrous ferric 

hydroxide clogged the resin pores. 

It was obvious that some ion having a more soluble hy­

droxide than ferric Ion would be a more desirable choice for 

the retaining ion in this elution. Consideration of the 

stability constants for the EDTA complexes of the rare earths 

and other metals showed that the cupric ion should serve to 

retain a number of the rare earths. Since, in general, ions 

with a plus three charge have a greater affinity for the resin 

than ions having a plus two charge, the cupric ion might re­

tain more rare earths than indicated when only the stability 

constants are considered. In fact, Spedding .et. al. (64) have 

shown that cupric ion can be used to retain all of the rare 

earths. Their method consisted of eluting a band of mixed 

rare earths adsorbed on a cation-exchange resin through a 

second cation-exchange bed in the cupric state using an 

ammonia buffered solution of EDTA as the eluant. It was found 

that gram quantities of pure heavy rare earths could be ob­

tained in a few days. This method has been expanded so that 

1,000 pounds of rare earths can be separated with one elution. 

Near optimum conditions have now been established. It is 

recommended that rare earth separations be made with 0.015 

molar EDTA at pH 8.4 (2, 65). With the larger equilibrium 
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constants for the exchange of adjacent rare earths, this type 

of elutlon gave a cleaner cut separation with less overlap 

of bands than the citrete method and the bands attained 

equilibrium within a shorter distance. 

Most adjacent pairs of rare earths can be separated by 

eluting a distance equal to the length of the adsorbed band, 

and the more difficult pairs, Sm-Gd, Tb-Y, Y-Dy, and Yb-Lu, 

can be resolved by eluting approximately three times the 

length of the adsorbed band. Also considerably less eluant 

is required for a given elution when EDTA is used in place 

of citrate. The principal disadvantages are that the cost 

of the chemicals is somewhat higher, the eluant is difficult 

to recycle, and the pH ranges and eluant concentrations are 

more critical than with citric acid. Too low a pH in the 

eluant results In the precipitation of acid EDTA, and too 

high a pH causes the precipitation of Cug(EDTA). As the EDTA 

concentration in the eluant is Increased, the allowable pH 

range becomes narrower. Also, at high pH values, Lu, Yb, 

and Tm are not completely retained by the cupric ion and 

losses may occur unless precautions are taken. 

Several experiments were performed in which neodymium 

bands were eluted behind copper bands with dilute ammonla-EDTA 

solutions by the author at Ames Laboratory (3). Also, a few 

other experiments were performed eluting only copper bands. 

If a certain amount of ammonium and hydrogen were mixed 
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homogeneously with the copper In the resin, flat elution 

curves were obtained. However, when a neodymium band is 

Inserted above this copper band there is slight tendency for 

the copper band to shift in composition. This tendency of 

the retaining bed to shift composition made it desirable to 

undertake further studies of the factors which influence such 

a system. 
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RESEARCH AND RESULTS OF COLUMN ELUTIONS 

Materials 

The resin used In the following experiments was a sul­

fonated polystyrene-divinylbenzene type which was purchased 

from Rohm and Haas of Philadelphia, Pennsylvania. It was 

labeled as Amberllte IR-120 and was a 40 to 50 mesh resin. 

The neodymium was supplied as the oxide by the rare-earth 

separation group at the Ames Laboratory of the Atomic Energy 

Commission. Its purity was greater than 99.99 per cent. 

The ethylenediaminetetraacetlc acid (H4Y), which was 

supplied by the rare-earth separation group, was purchased 

from Geigy Chemical Corporation of Yonkers, New York. In 

order to remove the slight amount of sodium and heavy metals 

that might be in the reagent, the H4Y was dissolved In a 

minimum amount of concentrated ammonium hydroxide. The re­

sulting solution was filtered and diluted. The H4Y was pre­

cipitated using a minimum amount of hydrochloric acid and 

washed with deionized water. Then the H4Y was converted to 

a concentrated solution of (NH^JgHgY by adding deionized water 

and ammonium hydroxide. The (NH4)gHgY was precipitated by 

adding 95 per cent ethyl alcohol, filtered, washed again with 

95 per cent ethyl alcohol, and died in the oven at 80° C. 

Baker and Adamson C. P. reagent or E. I. duPont de Nemours 

reagent hydrochloric acid was used for preparation of the 
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neodymium chloride solutions from the oxide and for prepara­

tion of the various other solutions, and Baker and Adamson 

C. P. reagent or duPont reagent ammonium hydroxide was used in 

preparing the eluant solutions. All other chemicals used, 

such as the ammonium chloride, cupric sulfate, sodium hydrox­

ide, and oxalic acid, were "Baker Analyzed" reagent or Fisher 

"Certified" reagent grade. 

The laboratory distilled water was passed through glass-

wool filters and a cation- and anlon-exchange deionizer in 

order to remove any iron oxide and salts. This water was used 

in preparing all of the solutions. 

App aratus 

A diagram of the apparatus is shown in Figure 1. The 

container for the eluant was a 10-gallon carboy. The long 

column was approximately 130 centimeters in length and was 

filled to a height of approximately 110 centimeters with 

resin, while the medium-sized column was approximately 50 

centimeters in length and contained approximately 35 centi­

meters of resin. The appendages were approximately 14 centi­

meters In length and contained about 3 centimeters of resin. 

The exact length of the resin bed depended on the cationlc 

composition of the resin, the solution with which the resin 

was in contact, and the extent to which the resin had packed. 

Each column and appendage had an inside diameter of approxi-
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mately 2.2 centimeters. 

A short piece of Tygon tubing with a screw clamp in the 

middle was attached to the bottom of each column or appendage, 

and a medicine dropper type tip was inserted into the other 

end of the Tygon tubing so that the eluate from the column 

could be either collected in a volumetric flask or passed by 

means of Tygon tubing to another column or appendage. A rub­

ber stopper with a glass tube through the center was inserted 

into the top of each column or appendage so that the column 

and appendages could be attached in series by means of Tygon 

tubing. A bumper was attached securely at the top of the long 

column so that all of the measurements could be made conve­

niently from the same reference point. 

Methods of Analysis 

The analytical method used to determine neodymium con­

sisted of precipitating the neodymium from an aliquot of the 

unknown solution, which was near the boiling point, with an 

excess of a saturated solution of oxalic acid. The precip­

itated sample was allowed to cool and then filtered with 

Schleicher and Schuell No. 589 Blue Ribbon paper. The pre­

cipitate was washed with dilute oxalic acid and transferred 

to a porcelain crucible which had been brought to constant 

weight. Then the precipitate was ignited In a muffle furnace 

and held overnight at approximately 850° C. The sample was 
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removed from the furance, cooled for five hours In a desicca­

tor, and weighed. From the difference in weight between the 

crucible plus sample and the empty crucible, the weight of 

the neodymium oxide was obtained. 

If there were sodium ions in the solution, the procedure 

was modified. The neodymium oxalate was digested near boiling 

for two hours before filtering the precipitate from the solu­

tion. The precipitate was washed with one per cent ammonium 

chloride solution containing a small amount of oxalic acid. 

The precipitate was washed into a beaker with deionized water 

and dissolved by adding a minimum amount of concentrated 

hydrochloric acid. Then the solution was diluted and neutral­

ized with ammonium hydroxide until only slightly acidic. 

After a slight excess of oxalic acid was added to the solu­

tion, the neodymium oxalate was digested again for two hours. 

The precipitate was filtered, ignited, and weighed as indi­

cated above. 

The concentration of the ammonium ion was determined by 

the Kjeldahl procedure (66). An aliquot of the solution was 

pipetted Into a distillation apparatus and diluted to a volume 

of about 200 milliliters. Approximately 50 milliliters of a 

50 per cent sodium hydroxide solution were added, and the 

ammonia was boiled off through a spray trap, condensed by 

means of a glass condenser into a receiver containing an 

indicator-boric acid solution, and titrated with a standard 
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solution of hydrochloric acid. The original 250 milliliters 

of solution were boiled down to approximately 70 milliliters. 

The Indicator-boric acid solution was prepared by diluting 

10 milliliters of a concentrated methyl purple indicator 

solution, which was supplied by Fieisher Chemical Company, 

and 50 grams of boric acid crystals to one liter. Twenty 

milliliters of this solution were added to each flask used 

to collect the ammonia. It was verified that the presence of 

EDTA in the initial aliquot did not change the value of the 

blank as determined by this procedure. 

The total EDTA concentration In the eluant was determined 

by titrating a known amount of a standard zinc chloride solu­

tion with the unknown solution using Eriochrome Black T as 

the indicator. The standard zinc chloride solution was buf­

fered with 10 milliliters of an ammonia-ammonium chloride 

solution. The buffer solution was prepared by diluting 6.75 

grams of ammonium chloride and 57 milliliters of concentrated 

ammonium hydroxide to 100 milliliters (67). 

The total copper concentration was determined by the gen­

eral method (66) of plating out pure copper metal electro­

lytic ally on a platinum screen. The cathode and anode were 

cleaned with six normal nitric acid, washed, and heated to 

redness in a flame. The cathode was allowed to cool to room 

temperature and weighed. An aliquot of the unknown solution 

was placed in a 250 milliliter beaker, and the electrolysis 



www.manaraa.com

22 

was performed at a potential of approximately two volts using 

a commercial electrolytic apparatus. This apparatus had a 

rotating platinum anode which stirred the solution during the 

analysis. About one gram of ammonium nitrate was added to the 

solution to improve the copper deposit. Water was added to 

the beaker after a couple of hours. If no new deposit formed 

after about 15 minutes, the motor was turned off and the 

electrodes were thoroughly washed, using a wash bottle, as 

they were removed slowly from the solution. After the cur­

rent was turned off, the cathode was removed, immersed In a 

beaker of water, and rinsed twice with alcohol to remove the 

water. Then the cathode was heated In an oven at 100° C for 

two or three minutes, cooled to room temperature, and weighed. 

The excess copper in the solution containing EDTA was 

titrated using a standard solution of ( NH^lgHgY according to 

the method described by Schwarzenbach (68). The aliquot of 

the solution to be analyzed was buffered by adding a small 

amount of ammonium chloride and a one molar ammonium hydroxide 

solution. The ammonium hydroxide solution was added dropwlse 

until a pH of 7.6 was attained according to the pH meter. 

Several drops of a freshly saturated solution of murexlde were 

added to the solution, and the solution was titrated with 

standard (NH^JgHgY until the color changed from yellow to 

violet. This procedure determined the molar concentration 

of the copper (Cug) in excess of the one to one complex of 
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copper with EDTA in the unknown solution. If EDTA was present 

in excess, the procedure was the same except that the excess 

EDTA (Yg) was titrated with a standard solution of copper sul­

fate and the solution turned from violet to yellow at the end 

point. 

The excess EDTA in a solution containing neodymium was 

titrated with standard neodymium chloride solution according 

to the method described by Schwarzenbach (68). An aliquot of 

the solution to be analyzed was buffered by adding a small 

amount of ammonium chloride and a one molar ammonium hydroxide 

solution. During the titration, the ammonium hydroxide solu­

tion was added dropwlse to maintain a pH of 7.0 or slightly 

above according to the pH meter. A small amount of solid 

Eriochrome Black. T, diluted in crystalline sodium chloride, 

was added to the solution, and the solution was titrated with 

standard neodymium chloride solution. The color changed from 

blue to red at the end point. This method determined the molar 

concentration of the EDTA (Yg) in excess of the one to one 

complex of EDTA with neodymium in the unknown solution. 

If the solution had a composition of essentially HgCuY, 

which was true for the eluate samples from the copper-

hydrogen band, the total replaceable hydrogen-ion concentra­

tion (H>p) was determined In the following manner. Several 

drops of phenol red indicator were added to an aliquot of 

the solution, and the solution was titrated with a standard 
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potassium hydroxide solution. The color of the solution 

changed from green to purple at the end point. Solutions con­

taining excess EDTA were corrected for the formation of the 

—3 
HY~ at the end point. 

The hydrogen ion in a solution approximately three molar 

in sodium chloride and containing much smaller amounts of 

neodymium chloride, ammonium chloride, and hydrochloric acid 

was titrated with the standard potassium hydroxide solution. 

Methyl purple indicator was the indicator which was used since 

the ammonium chloride in the solution determined the pH at 

the end point, and the color changed from green to purple. 

The total replaceable hydrogen in the eluate samples 

from the copper-ammonium-hydro gen band (see page 29) was 

titrated with the standard potassium hydroxide solution using 

a pH meter to potentiometrically detect the end point which 

was at a pH of approximately 4.6. The hydrogen ion in a solu­

tion approximately two molar in sodium chloride and contain­

ing much smaller amounts of copper chloride, ammonium chlor­

ide, and hydrochloric acid was titrated with the standard 

potassium hydroxide solution using a pH meter to potentio­

metrically detect the end point. This solution was obtained 

when a two molar sodium chloride solution was passed slowly 

through an appendage to remove all of the ions adsorbed on 

the resin. 
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Preparation of Eluant 

The desired amount of a standard (NH^JgHgY stock solution 

and slightly less than the desired amount of concentrated 

ammonium hydroxide were added to a calibrated carboy and the 

carboy contents ware diluted to the mark and mixed. From the 

pH of the solution and a plot of pH versus eluant composition, 

the amount of ammonium hydroxide required to obtain the de­

sired ammonium concentration was calculated. After this 

quantity of ammonium hydroxide was added and the solution 

mixed with a large stirrer for 15 minutes, the concentrations 

of the ammonium and the EDTA were determined as indicated in 

the previous section. 

Preparation of Resin Beds 

The neodymium-ammonium-hydrogen band, which was to be 

eluted down the column, was prepared by converting the hydro­

gen-form resin placed in the column to the approximate desired 

composition. A homogeneous solution of neodymium chloride, 

ammonium chloride, and hydrochloric acid was passed through 

the column to convert the resin to the desired form. The 

expected composition of the neodymium-ammonium-hydrogen band 

was calculated from the theory of the elution. The composi­

tion of the solution necessary to obtain this resin was cal­

culated from the approximate ion-exchange constants (16). 

A pure rare-earth band could have been used. However, this 
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band which is far from the equilibrium state would have dis­

rupted the other bands initially ; and a larger volume of 

eluant and a longer retaining bed would have been necessary 

to achieve the equilibrium condition. After the resin in the 

column has achieved equilibrium with the mixed solution, the 

excess solution above the resin was removed and the solution 

surrounding the resin was removed by passing deionized water 

through the column. 

A copper-ammonium-hydrogen band of the approximate com­

position to be expected in the elution was prepared by passing 

a solution of copper sulfate, ammonium chloride, and hydro­

chloric acid through the second column indicated in Figure 1 

(3). The purpose of this short bed was to prevent the high 

concentration of hydrogen in the copper-hydrogen bed from 

getting into the neodymium-ammonium-hydrogen band and pre­

cipitating EDTA. The excess solution was again removed from 

the top of the resin bed and deionized water was passed 

through the column to remove the excess salts in the resin. 

The copper-hydrogen band was prepared in a slightly dif­

ferent way than neodymium-ammonium-hydrogen and copper-ammo-

nium-hydrogen bands. A resin completely saturated with cupric 

ions was prepared by passing an excess of cupric sulfate 

through some hydrogen-form resin. After the resin was thor­

oughly washed, It was air dried to a practically constant 

weight. Then this air-dried resin was placed in a bottle and 
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mixed thoroughly by continually inverting the bottle-

The number of equivalents of copper per gram of resin was 

determined by weighing some resin into a small column and 

stripping the copper into a volumetric flask with a concen­

trated sodium sulfate solution. After the contents of the 

flask were diluted to volume, aliquots were snalyzed for 

copper by the electrolytic method. An air-dried, hydrogen-

form resin was prepared in the same way. However, hydro­

chloric acid was used to saturate the resin and a concentrated 

solution of sodium chloride was used to strip the hydrogen 

ion from a weighed sample of the resin into a volumetric 

flask. After the contents of the flask were diluted to 

volume, aliquots were titrated with a standard potassium 

hydroxide solution in order to determine the quantity of 

hydrogen on the resin. 

The proper amount of copper-form resin and hydrogen-form 

resin were weighed into an Erlenmeyer flask to give resin of 

the desired composition. Deionized water was added to make 

up for the water which would be adsorbed by the resin in 

swelling to its equilibrium state. A dilute solution of cop­

per sulfate and hydrochloric acid, which would be approxi­

mately in equilibrium with the resin, was added to the flask. 

After the resin and solution were mixed with a magnetic 

stirrer for four days, the solution was suction filtered and 

washed from the resin into a volumetric flask. After the 
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equilibrium solution was analyzed, the resin composition was 

calculated from the sum of the copper in the initial air-dried 

resin and solution added to the flask minus the copper in the 

solution washed from the resin. The equivalents of hydrogen 

in the final resin sample may be calculated in the same man­

ner. Thus, it was now certain that the resin was homogeneous 

and that its composition was known quite accurately. 

Samples containing approximately the same quantity of 

resin were placed in several appendages and the remaining 

portion of resin was placed in the long column. 

Observations and Measurement of 
Boundaries between the Bands 

After the columns and the appendages were connected in 

series with Tygon tubing as shown in Figure 1, the eluant 

was started through the series at the flow rate of one milli­

liter per minute. The eluate was collected in volumetric 

flasks by means of an automatic bottle changer. The posi­

tions of the boundaries between the ammonium, the neodymium-

ammonium-hydrogen, the copper-ammonium-hydrogen, and the 

copper-hydrogen bands were recorded twice a day at approxi­

mately equal time intervals and the amount of eluate was also 

noted at these times. Since there was a slight change in the 

length of the resin bed as the resin changed composition, the 

position of the top of the resin bed was also noted at these 

times. The distances measured from the bumper to a boundary 
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were corrected for the non-uniform diameter of the column. 

See Figures 2 and 4 for the plots of the position of the 

boundaries versus the total volume of eluate collected. 

Analysis of Eluate Samples 

The pH's of all of the eluate samples in the volumetric 

flasks were determined using a Beckman glass-electrode pH 

meter. The pH meter was standardized against the Beckman pH 

4 buffer and checked against the Beckman pH 7 buffer. 

The total replaceable hydrogen was determined for both 

the copper-hydrogen band and the copper-ammonium-hydrogen 

band. The ammonium concentration was determined for the 

copper-ammonium-hydrogen band and neodymium-ammonium-hydrogen 

band eluates. The total concentration of excess copper or 

excess EDTA was determined by titration depending on which 

substance was In excess in the eluate sample of the copper-

hydrogen band and the concentration of the excess copper was 

determined for the copper-ammonium-hydrogen band eluates. 

The total neodymium concentration and the excess EDTA concen­

tration were also determined for each eluate sample from the 

neodymium band. See Figures 3 and 5 for the plots of the con­

centrations of various species versus total volume of eluate 

at the time the sample was collected. 
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Figure 2* Distances of the three boundaries from the bumper 
versus the total eluate collected at the time of 
measurement for a retaining bed which is nearly 
c o m p a t i b l e  w i t h  e l u a n t  ( e l u t i o n  2 7 )  
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Figure 3. The composition of the eluate sample versus the 
total volume of the eluate at the time the sample 
was collected for a retaining bed which is nearly 
compatible with the eluant (elution 27) 
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Figure 4. Distance of the three; boundaries from the bumper 
versus the total eluate collected at the time of 
measurement for a retaining bed which is not 
compatible with the eluant (elution 29) 
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Figure 5. The composition of the eluate versus the total 
volume of eluate at the time the sample was 
collected for a retaining bed which is not 
compatible with the eluant (elution 29) 
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Analysis of Resin Samples 

Each operation of preparing the beds, eluting the neo­

dymium band down the complete set of beds, and analyzing the 

solution and resin samples was called a run. Results from 

several of the more Important runs are recorded in Table 1. 

In the case of runs 27 and 28, there were two appendages below 

the long column and these appendages were removed when 

approximately half of the neodymium band remained on the long 

column. The large column was then connected directly to the 

bottle changer by means of the Tygon tubing. The elution was 

continued until the neodymium band was completely removed from 

the long column. 

The run 29 had four appendages rather than two. The 

bottom appendage was removed when three-fourths of the copper-

ammonium-hydrogen band remained on the long column and the 

second appendage from the bottom was removed when one-half 

of the copper-ammonium-hydrogen band remained on the long 

column. The remaining two appendages were removed from the 

middle of the neodymium band as in rune 27 and 28. 

After the appendages were washed with deionized water, 

the ions in the various appendages were stripped into sep­

arate volumetric flasks with a concentrated sodium chloride 

solution. The contents of the volumetric flasks were diluted 

to volume, aliquots were analyzed for the particular ions, 

and the equivalent fractions of neodymium (E^), ammonium 
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Table 1. Column data 

Run no. 
27 28 29 

Ammonium 
band 

Neodymium-
ammonium-
hydrogen 
band 

Copper-
hydrogen-
ammonlum 
band 

Copper-
hydrogen 
band 

_IT 0.015902 0.01146 0.018624 
N&t 0.06017 0.03774 0.05887 
_ht _ 0.00344 0.00810 0.01323 
NH^m/Y^ 3.784 3.293 3.266 

pH 8.85 8.40 8.41 
eNH4 1.00 1.00 1.00 

yt 0.016074 0.011545 0.018515 
NdT 0.014997 0.00842 0.01478 
NH4 0.015485 0.01233 0.01574 
HT 0.003820 0.00857 0.01398 
ye 0.0010770 0.003120 0.003735 
pH 3.25 3.24 — — 

%d 0.7416 0.6638 0.8240 
ENR± 0.2512 0.3254 0.1594 
eh 0.00716 0.01073 0.01662 

yt (0.01590) (0.01146) 0.01789 
Cue 0.00076 0.00026 0.00408 

(0.02668) (0.01377) 0.01468 
Cut (0.01666) (0.01172) 0.02197 
ht (0.00360) (0.00863) 0.01294 
pH 3.86 3.16 3.07 

Ecu (0.556) (0.621) 0.8436 
ENH4 (0.441) (0.365) 0.1510 
eh (0.0027) (0.014) 0.0053 

Jt 0.01607 0.01151 0.01818 
Cut 0.01599 0.01148 0.01823 
Ht 0.03228 0.02308 0.03626 

Cue — — —— 0.00005 
ye 0.00008 0.00003 — —  

pH 2.16 2.25 2.13 
gCu 0.5275 0.6064 0.7583 
ER 0.47P5 0.3936 0.2417 
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(%H4^> and hydrogen (Eg) were calculated for the resin from 

the neodymium band. The equivalent fraction of copper rather 

than neodymium was calculated for the copper-ammonium-hydrogen 

band. The equivalent fraction is defined as the number of 

equivalents of a particular ion per equivalent of resin. 

Results 

A plot of the total volume of the eluate versus the posi­

tions of the boundaries between the bands indicated that the 

neodymium band was essentially constant in length after a 

short initial adjustment and that the band moved et a con­

stant rate with respect to the total volume of the eluate. 

The length of the copper-ammonium-hydrogen band was constant 

within experimental error for runs 27 and 28. However, the 

length of the copper-ammonium-hydrogen band in run 29 con­

tinued to increase at a continually increasing rate until 

after the neodymium had moved approximately one band length. 

Thereafter, the length of the band continued to increase at 

a constant rate. 

The concentrations of the various species such as ammo­

nium, neodymium, copper, and hydrogen in the eluate samples 

were essentially constant for the individual bands except 

for the copper-ammonium-hydrogen band in elution 29. The 

first two-thirds of this band was constant in composition. 

However, in the last third of the copper-ammonium-hydrogen 
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band, the copper concentration slowly decreased and the 

ammonium concentration slowly increased until the neodymium 

band appeared. This non-uniform region will be discussed 

later in the Discussion of Results. The two appendages taken 

from the copper-ammonium-hydrogen band had almost exactly the 

same composition since they were taken from the region of the 

band in which the concentration of the species in solution are 

constant. 

The two appendages taken from the neodymium band in run 

29 had essentially the same composition; and, likewise, this 

was true for runs 27 and 28. 

A precipitate appeared in each of the eluate samples 

from the neodymium band in elution 29 after standing for a day. 

A recorded amount of ammonia had to be added to each of the 

solutions in order to cause the precipitate to dissolve. 

After the solutions were analyzed, the results were corrected 

for the extra ammonia added and the dilution of the eluate 

samples. This phenomenon will also be discussed later. 

The results of these three runs are recorded in Table 1. 
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THEORETICAL DISCUSSION 

In the elution system studied previously by Speddlng, 

Powell, and co-workers (56, 57), an ammonia-buffered citrate 

solution was used as the eluant, and a hydrogen-form resin was 

used as a retaining bed for the rare earths. The elution 

system has three equilibrium elution bands which are in 

equilibrium with (l) the eluant, (P) the rare-earth eluate, 

and (3) the pure citric acid. The boundary regions between 

these bands will be designated as regions I and II. 

The elution system studied in this thesis is labeled as 

shown In Figure 6. The "flat" equilibrium type regions are 

(l) the ammonium band in equilibrium with the eluant, (2) the 

neodymium-ammonium-hydrogen band in equilibrium with the 

eluate, (3) the copper-ammonium-hydrogen band in equilibrium 

with its eluate, and (4) the predetermined copper-hydrogen 

retaining bed in equilibrium with its eluate Issuing from the 

column. In these equilibrium bands which give the "flat" type 

equilibrium curves, the concentration of all of the Ions and 

molecules will remain constant in the eluate which is In con­

tact with a particular band. Also, the concentration of the 

ions on the resin in terms of equivalent fraction will remain 

the same from top to bottom. The solution and resin phases 

will be in equilibrium and no net transfer of any ionic 

species will occur between the two phases. The short regions 

between the four equilibrium bands are the boundary regions 
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Figure 6. Schematic drawing of the equilibrium bands and 
the boundary regions between these bands for 
elutlons with en ammonia-buffered EDTA eluant 
or with an ammonia-buffered citric acid eluant 
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I, II, and III. These short regions occur because various 

reactions go to completion in a very small distance within 

an elution column, and a particular atomic species will be 

completely adsorbed by the resin or completely removed from 

the resin In this short region on the column. 

For these conditions, all net transfers between the two 

phases will occur only in the boundary regions. The rate at 

which these transfers take place depends on the eluant flow 

rate, the chemical constraints set up in the boundary regions, 

and the rate of the chemical reactions. That is, the boundary 

regions will be short if the chemical reactions in these 

regions have large equilibrium constants and the reactions 

take place rapidly. Since the solution phase Is flowing past 

the resin phase, the two phases may not quite reach equi­

librium In the boundary because the solution is flowing away 

from the resin where the solution was tending to approach equi­

librium. However, if a constant flow rate is maintained, the 

boundary regions will attain a steady state and a continuous 

gradient will occur in both phases. 

In the equilibrium bands, the equilibria attained and 

the length of the band will depend on the particular ions 

present, the complexes formed In solution, the resin used, and 

the net transport across the boundary regions from one equi­

librium band to the next. If an atomic species is transported 

out of one boundary at the same rate that it is transported 
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into the other boundary, the equilibrium band will remain a 

constant length. 

On the other hand, if there is a net transport of one or 

more atomic species through the upper boundary which differs 

from the net transport through the lower boundary, then the 

band will either grow or shrink. If this band is to show an 

equilibrium type behavior, then the transport of the atomic 

species into the band at the upper boundary must be compen­

sated by the leak through of other atomic species at the 

lower boundary so that the relative composition of the band 

will remain unchanged. Then the band will grow at the same 

rate the total equivalents are leaking Into the band. It fol­

lows that, if such equilibrium bands are to be maintained, the 

equilibria and net transport at the boundaries will be deter­

mined by the composition of the eluant entering the top of the 

column and by the composition of the final retaining bed. 

The eluant which flows into the top of the column at a 

uniform rate is a solution of a chelating acid which is 

usually buffered with ammonium hydroxide to a desired pH and 

has a homogeneous composition. This solution drives the 

bands already adsorbed on the column down its length and at 

the same time forms a new band which rapidly comes to equi­

librium with the eluant. After this equilibrium has been 

established, there will no longer be any net transfer between 

the resin and the solution phase; and the solution phase will 
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be the nsme as the eluant. This portion of the column which 

has achieved complete equilibrium will be designated as the 

eluant band or region 1. The boundary region where net 

transfer takes place is labeled region I. 

Before the two eluant bands are considered, the symbols 

used in the remainder of the thesis will be defined. It 

should be noted that when the charge of the ion or molecule is 

omltted from the symbol, the symbol indicates a molar concen­

tration in solution or a concentration of an ion on the resin 

in terms of equivalent fraction. The term equivalent fraction 

indicates the number of equivalents of a particular ion per 

equivalent of resin on the basis that one mole of hydrogen 

ion, one mole of ammonium ion, one mole of cunric ion, a ni one 

mole of neodymium ion are eaual to one equivalent of hydrogen 

ion, one equivalent of ammonium ion, two equivalents of cupric 

ion, and three equivalents of neodymium ion, respectively. 

Citij = the total molar concentration of the citrate 
group in all of the ions and molecules in 
solution. 

Yt = the total molar concentration of EDTA in all of 
the ions and molecules of the solution. 

NH4t = the total molar concentration of the NH4 groups. 

Ht = the total molar concentration of the replace­
able hydrogen. 

hT = the total replaceable hydrogen in the eluate 
(Ht) minus the total replaceable hydrogen in 
the eluant (Ht). 

Cut = the total molar concentration of copper. 

Rt = the total molar concentration of a rare earth. 
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NdT = the total molar concentration of neodymium. 

Glt = molar concentration of the trlnegatlve citrate 
ion, Cit-3. 

HCit = molar concentration of HClt"^. 

HgClt = molar concentration of HgClt-^". 

H3Cit = molar concentration of HgClt0• 
? 

RGltg = the molar concentration of RCitg . 

— P, 
HRCitg = the molar concentration of HRCltg" 

RCitOH = the molar concentration of RCitOH-. 

Y = the molar concentration of the tetranegative 
EDTA ion, Y~4. 

-•3 
HY = the molar concentration of HY-' . 

HgY = the molar concentration of HgY-^. 

H3Y = the molar concentration of HjY"1. 

H4Y = the molar concentration of H^Y°. 

OH = the molar concentration of OH-"*". 

H = the molar concentration of the hydrogen ion, H*. 

NH4 = the molar concentration of the ammonium Ion, 
NH4+. 

NH^OH = the molar concentration of NH4OH0. 

Cu = the molar concentration of the cuprlc ion, Cu+^. 

—  P  
CuY = the molar concentration of CuY~ . 

HCuY = the molar concentration of HCuY"^. 

HgCuY = the molar concentration of H^CuY0. 

Nd = the molar concentration of the neodymium ion, 
Nd+3. 

NdY = the molar concentration of NdY". 



www.manaraa.com

49 

HNdY = the molar concentration of HNdY°. 

ENH4 
= the equivalent fraction of NH4+ on the resin. 

EH = the equivalent fraction of H+ on the resin. 

ECu = the equivalent fraction of Cu+^ on the resin. 

ENd = the equivalent fraction of Nd on the resin. 

% = the equivalent fraction of R+'^ on the resin. 

A bar is used over these symbols to indicate the species 

or their concentrations in the eluant. For example, NH4<p, 

Git, Yf, end Hip express the concentrations in the eluant. 

The ammonia-buffered citric acid solution and the ammonia-

buffered EDTA solution are the two eluants used. 

Ammonia-Buffered-Citrie-Acid Eluant Bend 

The eluant is a citric acid solution of known concentra­

tion buffered with NH4OH to the desired pH, usually in the 

region of 5 to 7. Electroneutrailty of the eluant requires 

that the sum of the positive charges should equal the sum of 

the negative charges; thus, 

NH4T +• Hip = 3 Ci tip . (3) 

Since NH4^ and City are determined experimentally, this equa­

tion establishes Hip. 

The high pH of the eluant causes some hydrolysis of the 

ammonium ion; therefore, 

NH4T = NH4 + NH4ÔH . (4) 

Due to the hydrolysis, 
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Nh£ + îÇo° NH40H° + H+ , (5) 

and % 
, _ NH40H X H _ (B) 

Hh4 

i NH4 . . 
Thus, NH40H = Kk , (?) 

H 

__ , NH4 

and NH4 = NH4 + Kg ~rr~. (fi) 
1 H 

The following reactions occur in solution snd attain 

equilibrium: 
_  ̂  _ p  

r + Clt —± HCit ' , (9) 

and 

or 

K' = —HÇ1Î- ( 10) 
3 H x Gît 

HCÎt = Kg H x cït ; (il) 

_+ -2 . 
H + HCit HgCit , (12) 

snd 4 = HgClt , (13) 
H x HCit 

or HgCit = KgKg H2 x Clt ; (14) 

_+ 
H + HgCit HgCit , (15) 

and Ki = . (16) 
H x HgCit 

or HgCit = K^KpKg H3 x Clt . (17) 

The concentration of any complex ion in the solution may be 

expressed as the product of the apparent equilibrium constant 
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and the concentrations of the simple ions such as H"1", Cit 3, 

and . 

Since the apparent equilibrium constants (K^, Kg, Kg, 

etc.) are products and ratios of concentrations rather than 

activities, they will vary slightly with ionic strength. 

These apparent constants may be determined experimentally for 

the desired conditions. Although it is less desirable, these 

constants also may be calculated from thermodynamic constants 

or apparent constants at another ionic strength using the 

Deybe-Huckel theory (70). 

Since the solution phase in contact with the eluant-band 

resin has the same composition as the eluant, the material 

balance equations may be defined as follows: 

CltT = Cit + HCit + HgCit + H3Cit , (18) 

or CltT = ( 1 + Kgîï + KgKgïï2 + K^KgKgH3) Cit ; (19) 

and % = 3HgCit + PHgCit + HCit + H - NHjÔH , (?o) 

NH 
or HT = (3K^KgKgH3 > 2KgKgH? + KgH)Cit + H - % ~~ . (Rl) 

H 

The three equations 8, 19, and 21 establish the values 

of the three unknowns H, NH4, and Cit. Then the concentra­

tion of each of the complex species may be calculated from 

the values of these simple ions. Thus, the composition of 

the eluant is completely established by NH4^, Cit?, and the 

apparent equilibrium constants. 

The equilibrium between the eluant and the resin in 
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—+ —+ 

region 1 may be expressed as follows where NH4^snd Hr repre­

sent the ammonium and hydrogen ions on the resin: 

Hp + NH4 =5=îr H+ + NH4r , {??.) 

i  ̂ x enh4 
and Kf = -i . (q,3) 

NH4 x Eh 

The Kp is approximately equal to one, H to 10~S moles 

per liter, and NH4 to 10~^ moles per liter. Thus the ratio 

of Eh to E^h^ is equal to approximately 10"^ end the equiva­

lent fraction of ammonium on the resin, ENH^, may be set equal 

to 1.000. Therefore, the only ion that may be transferred 

to the resin in the lower boundary region I of the eluant 

band is the ammonium ion since almost all of the hydrogen 

and all of the other ions will be removed from the resin in 

region 1. 

Let Nj equal the equivalents of resin that the boundary 

region I traverses as one liter of eluant passes into the top 

of the column. Since the resin is packed uniformly in a 

column, the amount of eluate surrounding one equivalent of 

resin (f), irrespective of the ions adsorbed, is the same 

when the difference in swelling is neglected. 

Since fNj liters of eluant are required to surround the 

Nj equivalents of resin which develop in the eluant band, 

only 1 - fNj liters of eluant move into boundary I. Thus, 

let 

Vj = 1 - fNj 
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where Vj is the volume of eluant entering boundary I. 

Since almost none of the replaceable hydrogen in the 

eluant may be laid down on the resin to drive the other bands 

ahead of the eluant band, only the ammonium ions which are 

laid down in the boundary region forming ammonium resin cause 

the boundary to move. Therefore, 

Nj . ro4lVI . = SH4i(1 - fNj) - Tj^ . (84) 

The TnH4 represents the net equivalents of ammonium which 

leak, through boundary I into region 2 as one liter of eluant 

flows in the top of the column. When there is a net transport 

of ammonium from region 2 into region 1, arising from ammonium 

ion on the resin in region 2 leaking through the boundary 

into region 1, takes on a negative value and the boundary 

moves faster than is indicated by NH4(1 - fNj). When no leak 

through occurs, the boundary moves at the NH^Vj rate. 

Ammonia-Buffered-EDTA Eluant Band 

In this case the eluant is made up to a known concentra­

tion of ethylenediaminetetraacetic acid and is buffered to 

the desired pH, usually in the 8 to 9 range. 

The equilibria and the mass transport in this eluant 

band are very similar to the citrate-eluant band. The same 

type of equations apply; therefore, 

HT + NH4T = 4YT ( 2 5 )  
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, NH4 
and NH4t = NH4 + NH4OH = NH4 + K% . (26) 

The following reactions occur and attain equilibrium: 

îf + Y"4 HY™3 , (27) 

and K4 = _m _ , (28) 
H x Y 

or HY = K4H x Y ; (29) 

H+ + HY~3 ÎÇY~2 , (30) 

and k4 = _ 2 _ , (3l) 
H x Y 

or :gK4H2 X Y 

ÏT + HgY ' HgY ; (33) 

HgY = KgK4H2 x Y ; (32) 

.-2 

< H,Y 
and Kp = J , (34) 

H x HgY 

or ÏÇY = KgKgK^H3 x Y ; (35) 

H+ + HgY" ?=k= HjY° , (36) 

.1 H4Y 
and Kn = -—* , (37) 

1 H x HgY 

or H%Y = K^KgKgK^H4 x Y . (38) 

Since the whole must be equal to the sum of the parts 

for both the total EDTA and the total replaceable hydrogen 

of the eluant, the following material balance equations 

apply: 
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YT = Y + HY + HgY + HgY + H^Y , (39) 

or Yt = (1 + K^H + K^H2 + K^K^H3 + K^K^ÏÏ4)? .(40) 

HT = HY + 2HgY + 3HgY + 4H4Y + H - NH40H , (4l) 

or % = K4H + 2KgK^H2 + SK^K^K^H3 + 4K^KgK^H4 

i NH4 , t 
+ H - Kk . (42) 

H 

As in the previous eluant band which developed by using an 

ammo ni a-buff ered-citrate solution, the concentration of the 

three simple ions (H, NH4, and Y) are established by the three 

equations 26, 40, and 42. The concentration of each of the 

complex species may be calculated from the values of these 

three simple ions. Therefore, the composition of the eluant 

is completely established by NH4^, and Y%. 

Again, the same arguments apply for the lower boundary 

of the eluant band, because only ammonium ion may be laid down 

on the resin in the boundary region; therefore, 

Nj - (4Ït - B^Vj. - = Ni^Vj - T*jj4 . (43) 

The symbol Nj is again the number of resin equivalents which 

the eluant band increases in length or the rate the boundary 

moves per liter of eluant entering the column. The V% is the 

volume of the eluant flowing into boundary I or the liters 

of eluate flowing out of this boundary, and T^H4 
18 ^he net 
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equivalents of ammonium transported down through this boundary 

as a liter of eluant passes in through the top of the column. 

The volume of the eluant required to surround the resin in 

the developing eluant band, fNj, does not pass into the 

boundary region. Thus, 

Vj = 1 - fNj . (44) 

The fact that the resin is driven to equilibrium with 

the eluant within the eluant band puts a constraint on this 

system, !•£., the total replaceable hydrogen, Hip, must be 

transported Intact through boundary I in the solution phase. 

Since the ammonium is compatable with both the solution and 

the resin phases in the eluant band, it may be transported 

into the eluant band on the resin or out of the band in the 

solution. It will be shown that the rate at which the ammo­

nium is transported through this boundary, is determined 

by constraints imposed by the top boundary region of the final 

retaining resin bed. 

Pure Hydrogen Resin as a Final Retaining Bed 

A retaining bed is chosen so that the chemical reactions 

which occur within its upper boundary cause all of the ions 

which are not compatible with this bed to be transferred to 

the resin. At the same time, an equivalent amount of ions 

compatible with the retaining bed enter the eluate. If the 

proper homogeneous retaining bed has been chosen, the composl-
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tion of the eluate will be so adjusted that it is in equi­

librium with the retaining bed and no further net transfer 

occurs between the solution and the resin phases. A pure 

hydrogen bed has been used successfully with the ammonia-

buff ered citric-acid eluant and a homogeneous copper-hydrogen 

bed with the ammonia-buffered EDTA eluant. 

The eluate in equilibrium with the pure hydrogen bed is 

a pure citric acid solution ; so 

Hj = 3Citp , (45) 

and Eg = 1 . (46) 

The asterisk (*) will be used to designate quantities asso­

ciated with the final retaining bed. 

Since species containing citrate groups are not absorbed 

anywhere along the column, the total citrate concentration 

will not change as the eluate passes over various sections of 

the resin; thus, 

CltT = dtp = (1 + KgH* + K^KgH*2 + K^KgKgH*3)Clt* , (47) 

and 

3CitT = 3Cit? = = (3K1+ SKgKgH*2 + KgH*)Cit* + H*. 

(48) 

These two equations determine the values of Clt and H and, 

therefore, the concentration of each of the complex species. 

Thus, conditions in this region are determined by = 1, 

the value of Cit?, and apparent equilibrium constants. 

In the boundary region II, immediately above region 3 
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(the pure hydrogen band), all of the ammonium ion and all 

other cations, except hydrogen, must be deposited on the 

resin. It was shown that all of the replaceable hydrogen in 

the eluant must be transported through the boundary region I 

which is below region 1. If the region 3 is Immediately below 

the eluant band, then boundary region I is identically the 

same as boundary region II. 

The following reactions then occur at this boundary: 

H+ + NH+ + Cit~3̂ NH*r + HCit"2 , (49) 

h£ + nh£ + hcit-^nh^ + hgcit" , (50) 

and H£ + NH£ + H2Cit"^NH r̂ + HgCit0 . (51) 

All of these reactions are rapid and have large equilibrium 

constants. Therefore, these reactions go to completion within 

a very short distance on the column and the boundary region 

is very narrow. 

The total replaceable hydrogen in one liter of the 

eluate (h£) flowing out of the boundary comes from two 

sources. The first is the hydrogen ion being transferred from 

the resin to the eluate in the boundary (Ey - Ëjj) end the 

second is the total replaceable hydrogen in the eluant which 

is being transported through the boundary in the solution 

phase• Thus, 

**T^II " %I ÊH ~ ®H^ + **T^II * (52) 

The symbol Nj j  represents the equivalents of resin which the 
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boundary II moves, and represents the liters of eluant 

flowing Into boundary II as one liter of eluant flows in the 

top of the column. The symbol E% Indies tes the quantity of 

hydrogen which remains on the resin to be transported up 

through the boundary. However, It has been shown that is 

extremely small. Thus, 

Nn = Nj = (H* - HT ) ( l  - fNjj ) = NH4 (1  - fNj) - tJ h .(53) 

Since boundaries I and II are identical and no ammonium enters 

region 3, must equal zero. 

Rare-Earth Equilibrium Band 

If a rare-earth band is Inserted between the boundary 

regions I and II, a number of reactions of the following type 

will occur in boundary I: 

R*3 + 2Cit™3 + 3NH4 3NH4̂  + RCit"3 , (54) 

H+ + RCit™3 q=S= HRCltg2 , (55) 

and RCitg3 + Hg0° RCitOH" + H+ + Cit™3 . (56) 

All of the rare-earth citrate complexes have very large 

stability constants so all of the rare earth on the resin is 

picked up in a very short distance along the column. Since 

—3 
the eluant has a high pH, the relative Cit" concentration is 

large. However, as the rare-earth citrate complexes are 

formed In the eluate, hydrogen ion is liberated so that a 

marked lowering of the pH occurs in this region. If the 
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initial rare-earth band Inserted between the boundaries is 

too concentrated in rare-earth ion, the eluate and the resin 

bed will be out of equilibrium. Some ammonium ions will leak 

through boundary I making the eluate too high in ammonium. 

This ammonium will start to exchange with the rare-earth resin 

and the band will grow since all of the ammonium and rare-

earth are deposited at boundary II. 

While ammonium and hydrogen ions are being transported 

into region 2, the top boundary moves more slowly than the 

equilibrium band. The rare-earth band will lengthen as ammo­

nium end hydrogen dilute the fixed amount of rare earth in 

the band. The lower boundary will travel at almost the equi­

librium rate because all of the ammonium is transferred to 

the resin at this point. The very small amount of hydrogen 

which is transported into the band through the lower boundary 

as it lengthens causes the band initially to move at a slight­

ly faster rate. 

Ultimately, a mixed rare-earth-ammonlum-hydrogen bed of 

fixed composition will come to equilibrium with the eluate and 

the band will move down the column with constant length. The 

same number of equivalents of rare earth, ammonium, and hydro­

gen picked up by the eluate in region I will be redeposited in 

region II. When the eluate encounters the hydrogen retaining 

bed in region II, the pH is again markedly lowered so that 

the ionic species in the eluate are mainly HgCit and HgCit-. 
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These complexes have much larger stability constants than the 

rare-earth citrate complexes so that in a very short distance 

along the column the rare earth is redeposited liberating 

hydrogen Ions from the resin. Also, the ammonium ions will 

exchange with hydrogen ions since the hydrogen citrate species 

have high stability constants and this results in ammonium 

being deposited simultaneously with the rare earth. As a re­

sult of these reactions, all of the ammonium ions and the 

rare-earth ions are deposited on the resin in region II and 

the eluate flowing over the hydrogen retaining bed becomes 

pure citric acid. Since the two boundaries move at the same 

rate under equilibrium conditions, 

Nj = ^11 = NH^^Vj = (-30it — Hiji)Vjj „ (57) 

and Vj = Vjj = ( 1 - fNj) ; (58) 

NH4T 
therefore, Nj = ±— . (59) 

1 + fnh4t 

Since there is no net transport of ammonium through 

either boundary and the %. is transported through each 

boundary, Nj equivalents of ammonium in the eluant may be 

considered completely laid down in boundary I and all of the 

Nj equivalents of cations in the rare-earth band may be con­

sidered completely transferred into the Vj liters of eluate. 

Then, 

3rtvj = njer t (60) 
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NH4VI = NIENH4 » (61) 

and (Bp - HrjOVj = NjEg (62) 

VT VT -I 
where »=- = —^à.— = z~— • (63) 

NI V;NH^ NH4t 

Vt  3RM 
Thus, ER = 3RT jjj- = — , (64) 

NH4T 

NH> 
%n4 - . (65) 

Hm — Hm 
and E H  =  -4=— ( 6 6 )  

The following equations may be written for the equilibria 

between the solution and resin phases : 

nh+ + h+ h+ + nh4r , (67) 

, H x ENH4 
"f = g—^ 

R+3 + 3NH4r =#= 3NH4 + R*3 , (69) 

, (NH4)3 x ER 
and Kj = = . (70) 

r x (enh4)' 

The third expression may be derived from the other two equa­

tions and is not Independent; that is, 

R+3 + 3H* 3H+ + R*3 , (71) 
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, (H)3 x en 
and Kj = 1 = K-^Kp)5 . (72) 

R x (EH)3 

Substituting the values for E^, Ejjg , and Eg obtained 

from equations 64, 65, and 66 into equations 68 and 70, gives 

the following equations: 

 ̂ •- !73) 

H thus, Hip = Hip + —— ; ( 74) 
kp 

, 3ht(^)s 

and Kj = g—-— ; (75) 

k'r 
thus, Rt = . (76) 

.3(nh4t)8 

The reactions which attain equilibrium in the eluate of 

the rare-earth band are the following: 

R+3 + 2Cit*3 RCit"3 , (77) 

and 

or 

i rcitp . . 
Kc = , (78) 
5 R x (Cit)2 

RCitg = KgR(Cit)2 ; (79) 

H+ + RCitg3 =#= HRCit"2 , (80) 

and 

Or nrtUlTg = A-gn-5 

, hrcltg 
K6 " H x RCitg > (81) 

HRCitp = KkLH x R(Clt)2 ; (82) 
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H20° + RCitg3 ̂  RCitOH"2 + Cit"3 + H+ (83) 

ana 4 ••hcltoh0?4" X H <84) 

or RCitOH = K^Kg R xHClt . (85) 

The following reactions have been discussed previously 

on page 50 in this thesis: 

hicit"(3"i) + h* ^ h1+1cit-^2-i^ (i = 0,1,2). (86) 

The material balance equations for HT and Rip mey be written 

as follows: 

HT = H + 3H3Cit + 2HgClt + HCit - RCitOH + HRCltg ; (87) 

therefore, 

H 

kjp 
HT + S- » H + (SK^KgKgH3 + 2KgKgH2 + KgH - K^Kg | 

+ KgKgH x R x Cit)Cit . (88) 

Rrp = R + RCitg + HRCltg + RCitOH j (89) 

therefore, 

_ l̂R = R + KgR x (Cit)2 + KgKgH x R x (Cit)2 + K?KgR g Clt 

3(nh4tr 

(90) 

kî 
or = 1 + Kg(Clt)2 + Kg KgH x (Cit)2 x K?Kg Sit . 

(g,) 

Since no ion or molecule containing a citrate group is 

adsorbed by the resin anywhere along the column, the follow-
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lng material balance equation may be written for Cit<j: 

CitT = Citf = Cit + HCit + HgCit + HgCit + PRCitg 

+ SHRCitg + RCitOH ; (92) 

therefore, 

Clt = (l + KjH + KgKgH2 + K^KgKgH3 + pK^R x Cit 

+ SK'k'h X R x Cit + kV g)cit . (93) 
d u f b h 

The charge balance in solution requires that the follow­

ing equation be valid: 

NH4 + H + 3R = 3Cit + 2HClt + HgCit + 3RCitg + ^HRCltg 

+ RCitOH ; (94) 

therefore, 

NH4 + H + 3R = (3 + 2KgH + KgKgH2 + 3KgR x Clt 

+ 2KgKgH x R x Cit + K7K5 |)0it • (95) 

Since the three equations 88, 91, and 93 have only the 

three unknowns H, R, and Cit, these unknowns may be deter­

mined by solving these three equations simultaneously. The 

values of HT, RT, NH4, E%, ER, and E^n4 are determined by the 

equations 74, 76, 95, 66, 64, and 65, respectively, and the 

values of H, R, and Clt. The concentration of the complexes 

also are determined by the values of H, R, and Cit. 

Homogeneous Copper-Hydrogen as Final Retaining Bed 

The resin bed in region 4 is a homogeneous copper-hydro-

gen resin. If an equilibrium band is to be established, the 

eluate will have to come to equilibrium with the resin phase. 
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Thus, the eluate will contain only H and Cu ions and com­

plexes of these ions with the EDTA. 

Retaining bed with no transport 

When the copper-hydro gen bed is placed directly below 

this eluant band, the following reactions occur at the bound­

ary between these two bands : 

2NH| + Cu*2 + Y~4 2NH r̂ + CUY"2 (96) 

2NHJ + CUp2 + HI™4 — 2NH^ + HCUY~ (9?) 

NHj + H* + CuY"2 ̂  NH4r + HCUY" (98) 

NH* + + HCuY" — NH4r + HgCuY0 (99) 

These reactions have large apparent equilibrium constants 

and cause the copper and hydrogen ions on the resin to be re­

moved within a very short distance on the column. However, 

for each eluant of a fixed composition there is only one com­

position of the copper-hydrogen resin which is compatible 

with that eluant such that no net transports occur at the 

boundary except the H<p and Yip of the eluant which pass 

through all boundaries unchanged. 

Since all of the ammonium is transferred to the resin in 

boundary III, the boundary will move Njjj equivalents, where 

NH4tVIII = NIII%H4 = NIII , (100) 

V 
and JEU = -1— . (loi) 

NIII NH4T 
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The symbol Njjj refers to the number of equivalents of resin 

over which boundary III moves and symbol Vjjj to the liters of 

eluate which flow through this boundary as exactly one liter 

of eluant flows into the top of the column. 

The copper and hydrogen are being completely transferred 

to the eluate at the same time as the ammonium is being com­

pletely transferred to the resin. Thus, 

NIIIECu = 2CUT VIII ' (102) 

and ^IIIEH = (— ̂T^HI * (103) 

When Njjj and Vjjj are eliminated from equations 102 and 103 

by means of equation 101, the following equations are obtain­

ed: 

• Si • 
* 

and Eg = (105) 
nh4t 

# # 
where hrp = Hip - Hip . ( 106) 

The asterisk (*) indicates a species or its concentration in 

the copper-hydro gen retaining bed. 

In the equilibrium region 4 where there is no net trans­

fer of species between the resin and solution phases, the 

following reaction has achieved equilibrium: 

#+ p *+ tt-i. #+. p . . 
Cu 2 + 2Hr 2H + Cu? , (107) 
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and 
K, _ (H»)g x Eg„ (108) 

Cu* x (es)2 

# # hm 2Cut  ,  \  
Since 1 = Eq + Eg = —— + ™— , ( 109) 

u NH4T NH4T 

then h£ = NH4̂  - 2Cu^ (llO) 

(h')2(2Cum)nh 

and KE " Cu*(NH4tp - ?Cut)2 ' 111 

_ (H*)2NH4 mL 
thus, (Cu?) - (NIL + ; 5~)Cut + -r-i = 0 • (112) 

1 T 2KECu 4 

Therefore, Cu£ may be solved as a function of the variables 

Cu and H by means of the quadratic formula; that is, 

Cuj = Cu*) . (113) 

The reactions which attain equilibrium in the eluate 

are the following: 

Cu**2 + Y*"4 =±r CuY*~2 , (114) 

Snd KÀ * CuS^ y» . (US' 

or CUY* = K^Cu* x Y* ; (116) 

H** + CuY*-% ̂ ±r HCuY*- , (117) 

kB • J"»** Y, , (lifi) 
H x CuY 

* 

or HCuY* = KgH* x CuY* = KgK^H* x Cu* x Y* ; (lis) 
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H*+ + HCuY*- ^±: HgCuY*° , (lP.o) 

i H0CUY* 
and Kc = —2 , (l2l) 

H* x HCuY* 

or HgCuY* = KgKgH*2GuY = KcKgK^H*2 x Cu* x Y* . (122) 

Since very little EDTA is adsorbed anywhere along the 

column, Y^ is set equal to Y^, and the material balance equa­

tions for the copper-hydrogen band eluate may be written as 

•m* # 
follows (Y and HY may be neglected in the material balance 

at the low pH of this band): 

Y? = Y% = CuY* + HCuY* + HgCuY* + %Y* + HgY* + HgY* ; 

(123) 

therefore, 

Yt = K^Cu* x Y* + KgK^H* x Cu* x Y* x KQKB4(H*)2 

x Cu* x Y* + KJKGKGK^H*)4 X Y* 

+ KgKgK^(H*)3 x Y* + K^(H*)2 x Y* . ( 124) 

CuJ = Cu* + CuY* + HCuY* + HgCuY* ; (125) 

therefore, 

gl(H*,Cu*) = Cu* + K^Cu* x Y* + K^H* x Cu* x Y* 

+ KqKqK^H*)2 x Cu* x Y* . (126) 

The charge balance in the eluate may be expressed in 

the following manner: 

2Cu* + H* = HCuY + 2CUY + HgY* + 2HgY* ; (12?) 

therefore, 



www.manaraa.com

70 

2Cu* + H* = KgKÀH* x Cu* x Y* + K^Cu* x Y* 

+ K^KgK^(H*)3 x Y* + 2KgK4(H*)2Y*. (128) 

The three equations 124, 126, and 128 determine the three 

variables H*, Cu*, and Y*. Since the concentration of each 

of the complexes in the eluate is determined by the values of 

* 
these variables, then Cuip is established by equation 126, h<p 

# # 
by equation 110, and Equ and Eg by equations 104 and 105. 

Therefore, there is only one composition of the resin for 

each eluant which will give no net transport of any of the 

ions except the total replaceable hydrogen and total EDTA in 

the eluant. 

However, it is not feasible to use this retaining bed 

adjacent to the eluant band because the high concentration of 

hydrogen ion in the retaining band would precipitate H4Y° in 

the eluant band. Precipitation may be prevented, on the other 

hand, by Inserting a short copper-ammonium-hydrogen band of 

the proper composition between the two bands without altering 

the boundary conditions of the eluant band or the copper-

hydrogen retaining band. The copper-ammonium-hydrogen band 

will remain a constant length since there will be no net 

transports at either of the boundaries except for the HT and 

Yip which pass in through the top boundary and out through the 

bottom boundary. The discussion of the copper-ammonium-

hydrogen band which is given later will Indicate why this is 

true • 
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Retaining bed with transport 

If the value of Equ in the homogeneous copper-hydrogen 

retaining bed has a value too large to be compatible with a 

* 
given eluant as defined in the previous section, then % will 

* * 
be too small; and, conversely, if Equ is too small, then EH 

is too large since 

ECu + Eg = 1 . (129) 

Whatever the composition of the copper-hydrogen retaining 

bed, if an equilibrium band is to form, the eluate will con­

tain only copper and hydrogen species and must come to equi­

librium with the resin bed. The equilibria will be deter­

mined by the total EDTA concentration in the eluate, the com­

position of the resin, the values of the apparent stability 

constants of the complex ions formed, and the apparent equi­

librium constants of the solution-resin exchange of cationic 

species. Since the equilibria are fixed, any adjustment in 

the system which will make the resin bed compatible must occur 

by allowing mass transport to occur through boundary region III. 

Therefore, a certain amount of copper or hydrogen will leak 

through the boundary as the band advances and, as will be 

shown later, will tend to form or consume a copper-ammonium-

hydrogen equilibrium band. 

Since the eluate comes to equilibrium with the copper-

hydrogen resin, the apparent equilibrium equation 
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^-Srnf?' ,1™1 

Is valid. Also, the equilibrium equations, material balance 

equation 124, and the charge balance equation 128, as given 

in the previous section, apply when the appropriate apparent 

* 

Cu 
* * 

constants are used. Therefore, when Ec and E% are pre­

determined, this establishes the values of H*, Cu*, snd Y' • 

These ion concentrations in turn determine the concentration 

of all the complex ions in the eluate. The total copper 

(Cu£) is determined by equation 124 and the total replaceable 

hydrogen is determined by the following equation: 

4 = 4Yt - 2Cut = H* + KqK^H* x Cu* x Y* + pKçKgKj^H*) 

x Cu* x Y* + (4K^K^K^K^H*4 + SKgKgK^H*3 

+ 2KgK4H*2)Y* • (131) 

Therefore, the eluate composition is completely determined by 

the fact that Y^ = Y^ and the values of Equ and Ey. 

When the copper-hydrogen band is not compatible with the 

eluant in that the copper-hydrogen ratio is too high, then 

the copper and hydrogen will not be completely removed at 

boundary III. A small quantity of the copper and hydrogen 

will leak through the boundary III to form a growing copper-

ammonium-hydrogen band Just above the boundary. Conversely, 

if the copper-hydrogen resin ratio is too low and a copper-

ammonium-hydrogen band already exists above boundary III, 
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then some copper end hydrogen will leak through the boundary 

to make up the deficiency in the copper-hydrogen band. Once 

the copper-ammonium-hydrogen band has vanished, then hydrogen 

will start accumulating in the boundary region as the band 

advances and will destroy the equilibrium band in region 4. 

If a copper-ammonium-hydrogen equilibrium band is to exist 

between the copper-hydrogen resin bed and the eluant band as 

this bed grows or shrinks, ammonium must leak through boundary 

II to compensate for the copper and hydrogen leak through at 

boundary III. 

As one liter of eluant flows in through the top of the 

column, the boundary traverses Njjj equivalents of resin and 

Vjjj liters of eluate pass down through this boundary. Also, 

TS? equivalents of copper and equivalents of hydrogen 

ion are transported up through boundary III. Because the 

copper and hydrogen on the Njjj equivalents of the retaining 

bed must either be transferred to the eluate or transported 

into the band above, the following equations are valid: 

NIIIECu = 2CuTVIII + TCu ' (132) 

and ^III^H 3 — ^t^III * (133) 

Since fNju liters of eluate are required to fill the 

Nui equivalents of resin phase which develop in region 3 

above boundary III, only 1 - fNjjj liters of eluate pass into 

boundary III; then, 
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viii = 1 * fniii • 

If this value of Vju is substituted into equations 

132 and 133 and Njjl is eliminated between the two equations, 

then the following equation is obtained: 

i*11 , (e°u + gcutf»1'| 4. t|n) _ 20u* ( 134) 
vU _*  ,  # „  A  

h + 

The eluate concentrations hip and Gu% are given by equations 

106, 131, and 125. Since Tq*1 and are the only unknowns 

in equation 134, Tqu^ is established as a function of Tj 1̂ 

by the constraints imposed by the retaining bed and the 

eluant band. 

The rate at which the boundary iii is driven (in equiva­

lents of resin per liter of eluant flowing in the top of the 

column) is equal to the sum of the rate at which copper, 

ammonium, and hydrogen are laid down on the resin behind bound­

ary iii and the rate at which copper and hydrogen are trans­

ported up through boundary iii via the resin. Thus, 

niii = (4ÎT " HT)Vm + C + T 1̂1 . (135) 

The sum of the concentrations of copper, ammonium, and hydro­

gen in the region 3 eluate which is transferred to the resin 

is 4Yrp - Hip because Hrp and are the only quantities being 

transported through boundary iii in the solution phase. Since 
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and Vjj j  s  1 — fNjj j  , (137) 

then Njjj = NH^(l - + ̂ Cu + * (138) 

As the elutIon progresses and the copper-ammonium-

hydro gen equilibrium band builds up, the band will grow at 

just the rate at which the total equivalents of copper, ammo­

nium, and hydrogen leak into the band (Tq 1̂ + T 1̂1 + 

where Tj^ is the rate at which ammonium is transported into 

region 3 through boundary II). Furthermore, if the concen­

trations are not to change as the band grows, the ratio of 

the equivalents of each species leaking into the band to that 

species already in the band must remain constant. If this is 

not Initially true, there are sufficient degrees of freedom 

in the boundary transfers and equilibrium shifts so that 

these conditions can be fulfilled. 

Copper-Ammonium-Hydrogen Band 

It will be shown later that a rare-earth band inserted 

between boundary regions I and II will cause no difference 

in the compositions of the lower equilibrium bands or the 

transport of atomic species through the lower boundaries. 

The equilibrium rare-earth band will remain a constant 

length and composition; and any net transport of an atomic 

species into or out of the rare-earth band through the upper 

boundary region will be exactly equal to the net transport 

of that atomic species out of or into the band through the 
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lower boundary region. 

Since the region 3 (the copper-ammonium-hydrogen band) 

has attained equilibrium with the eluate, there will be no net 

transfer of ions between the solution and resin phases. As 

this band progresses, the Njjj equivalents of cations which 

are laid down above boundary III must come from two sources; 

they are supplied by the Vjjj liters of eluate which enter 

the boundary region and by the net transport of ions which 

leak up through boundary III via the resin phase: 

III 
%IIECu = SCuipVjjj + TQu » (139) 

NIIIENH4 = NH4VIII » (140) 

and ^III^H = ~ ̂ T^^III ( 141) 

where ^III = 1 - fNjjj . (14?) 

The sum of the above three equations gives the follow­

ing equation: 

NIIl(ECu + %H4 + EH> = (2Cut + NH4 + Ht - HrjOVjjj 

+ To" + v?1 ; (143) 

and, thus, Nm = NH4T(l - fNm) + iJJ1 + Tfj11 . (144) 

This equation is the same as was given for the rate at which 

the boundary III moved. 

The atomic species which are present in the Vj-j liters 

of eluate which have passed boundary region II originated by 

being either transferred to the eluate from the resin or 
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transported through the boundary in the solution phase. 

Copper and hydrogen which were originally on the resin in 

region 3 are transferred completely to the eluate in boundary 

region II and thus have no net transports through the bound­

ary . Therefore, 

SCuipVj j s 2Curp(l — f^jj ) — ^xiECu ' ( 145) 

(H»ji - Hj)Vj j  = (Hj - Hrp)(l - fNjj ) = Nj jEj j  , ( 146) 

and NH^Vj j  = NH^(l - fNjj ) = + T^^ ; ( 147) 

and the sum of the above three equations gives rise to the 

following equation: 

Nu = nh4t^ 1 - - TNH4 ' (148) 

This equation indicates the rate at which the boundary II 

is moving. When there is no rare-earth band between region 3 

and region 1, the boundary region I below region 1 is iden­

tically the same as the boundary region II above region 3, 

therefore, Njj and Nj are the same. 

The following equations are obtained by solving the 

equations above: 

* - TÎi£ • 
S0uT(l + flji ) 

ECu * 20UT(ÏÇJ " F> - —ZI ÏÏ , (150) 
NH4T ~ TNH4 
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ji 
•4 - (l + fNH4T - fNH4) 

^  ' < m )  

hT(l + fT^ ) 
and EH = — -A- . (152) 

NH4T - %4 

There are two Independent equilibria established between 

the eluate and the resin phases; namely, 

CU+^ + 2NH4R 2NH4 + CUP^ ; (153) 

. (tlh4>g » ec. . 
thus Kd = 3 hdà . (154) 

i2 
% °u X EfjH 

and NHj + Hp H+ + NH4r) ; (155) 
cr 

H x ET 

LF ~~ 

, n x cNH4 
thus Kp = 2. . (156) 

NH4 X EG 

When ECU and E^^ are eliminated from equation 154 by 

means of equations 150 and 151, the following equation is 

obtained: 

kd NH4 - TjS (1 + fNH4T - fNH4) 2 

Cut = x — ; ( 157) 
2(nh4t - t^)(l + ftnh4)(nh4)2 

that is, CuT = Cu x gg(NH4, ) . (156) 

When Ejjjj4 and Ey are eliminated from equation 156 by means 

of equations 151 end 152, the following equation is obtained: 
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NH4 - ?ll (1 + fiJH4 - fHH4) 
h H X 1 — . ; (159) 
1 kf(1 + fnh4t)nh4 

that is, hT = H x g3(NH4> ̂  ) (l60) 

where h^ = % - %> . (161) 

As is valid for the other bands, the concentration of 

each of the complexes in solution may be expressed in terms 

of the apparent equilibrium constants and the concentration 

of the simple ions H+, Cu+2 and Y-4. However, since the 

copper forms a very stable one to one complex with EDTA, it 

is not necessary to consider the extremely small amounts of 

H4Y°, H3Y™, H2H~2, HY-3, and Y-4 in the eluate. The HgY" 

ion has the largest concentration of these ions at the pH 

of the eluate in this band. Since 

H3Y = KgKgK4H3 x Y = 1020 H3 x Y (162) 

and CuY = K^Cu x Y = 1019 Cu x Y (163) 

when H = 10~3 moles per liter (164) 

and Gu = 10-4 moles per liter, (165) 

H y 3 
then CuY = 10 = 10~4 ' (l66) 

Therefore, each EDTA group may be considered to be complexed 

with one copper, and CuY-2 rather than Y~4 may be considered 

the simplest ion having an appreciable effect on the equi­

librium established in this region. 

Since very little EDTA is adsorbed anywhere along the 
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column, generally, Y%, may be set equal to Yi j. Thus, 

YT = YT = CuY + HCuY + HgCuY , (16?) 

or YT = (1 + KgH + KqKqH2)CuY . (168) 

Furthermore, the following material balance equations 

are valid for the eluate in region 3: 

HT = Ht + hT = H + HCuY + gHpCuY ; (169) 

thus, % + H x g3(NH4, T 4̂) - H = (KbH + ?KcKbH2)CuY . (170) 

CuT = Cu + CuY + HCuY + HgCuY = Cu + YT ; (171) 

thus Cu x gg(NH4, T^y^) = Cu + Yt . (172) 

The electroneutrality equation for region 3 may be 

written as follows: 

NH4 + 2Cu + H = 2CUY + HCuY ; (173) 

therefore, NH4 + gCu + H = (2 + KgH)CuY . (174) 

It may be observed at this point that there are the 

four equations 168, 170, 172, and 174 having the five unknown 

variables H, CuY, Cu, NH4, and Tjjjj^. The boundary conditions 

Imposed at the upper boundary by the eluant band and all of 

the equations involved in the equilibrium band have been used. 

The only equation which has not been utilized is equation 134 

which is the boundary condition imposed by the retaining bed. 

If this boundary condition will provide an equation employing 

only the variables included in the above list, then the com­

position of region 3 is completely determined. In order to 

show that this boundary condition may be transposed into a 
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function with only five or fewer of the above variables, the 

following discussion was found necessary. 

The solution of equations 139 and 145, 140 and 147, and 

141 and 146 for %xi ~ %I gives the following equation : 

TÏ" TNH4 Tin 

Nm • Nl1 = E0u + gCuTf " ENH4 • NH4f • • (175) 

The above is certainly the expected result. The ratio of the 

rate that an atomic species is transported into a band to the 

quantity of this atomic species in a band containing one 

equivalent of resin should be the same for each atomic species 

in the band or the band would change composition and not be 

in equilibrium. 

TÎP: 

Equation 175 yields the following values for Tq*1 and 

tit tsl(e0u * 

t°u = enh4 + nh4f (1761 

.xi 
•NH, 

ENH, + NH4f 

III TNH4(EH + hTf) 
and TH = -—= ; . (177) 

When these equations were used to eliminate Tq** and 

Ty^ from equation 134, the following equation is obtained 

(equation 134 is the boundary condition imposed by the re­

taining bed): 
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TNH4^ECU + 2CUTF ) EQ + 2CUTF , * II EH + H<PF X 

-fe-najr- = -$r%r <h'r + ̂  x ̂  

- 2CuJ • (178) 

The variable Cu^ was eliminated from equation 150 by-

means of equation 171 to obtain equation 179, and the variable 

hf was eliminated from equation 152 by means of equation 160 

to obtain equation 180, thus, 

S(Cu + Y<P)(1 + F^NH.) 
ECu - — J5 — , (179) 

NH4T * TNH4 

(1 + flJJ ) X H x g3(NH4, ill) 

and Eh = 22 71 ~ • (180) 
NH4T - TNH4 

When the variables EqU, EH, ENH^, Cut, and hj are 

eliminated from equation 178 by means of equations 179, 180, 

151, 171, and 160, respectively, the resulting equation has 

only the four variables H, Cu, NH4, and T^g^. Therefore, when 

this equation is added to the list of equations which are 

enumerated on page 80, there are five Independent equations 

and five unknown variables H, CuY, Cu, NH4, and T^^. Thus, 

the composition of the eluate and resin phase of region 3 may 

be completely established from the eluant composition, the 

retaining bed composition, and the apparent equilibrium con­

stants of the system. 
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Neodymium-Ammonium-Hydrogen Band 

If a pure rare-earth band Is inserted between the eluant 

band and the region 3, dilution of the rare-earth with ammo­

nium and hydrogen would occur In the same fashion as occurred 

In the elution of the rare-earth band with the ammonia buffer­

ed citrate eluant and the hydrogen retaining bed. Initially, 

more ammonium and hydrogen will be transported in the top 

boundary than is transported out the bottom boundary. The 

band will grow until an equilibrium length Is obtained. 

Since there is a constant amount of rare-earth In the 

band, there must be a constant amount of ammonium and hydrogen 

In the equilibrium rare-earth band. Therefore, once equi­

librium has been attained, the net transport of ammonium ions 

in the top of the band must be the same as the net transport 

of ammonium out the bottom of the band; namely, the transport 

necessary to maintain the equilibrium copper-ammonium-hydrogen 

band. Because of the boundary conditions Imposed at the 

upper boundary, the % in the eluant will be transported down 

through both boundaries. 

An atomic species leaving boundary region I In the Vj 

liters of eluate is either transferred from the Nj equivalents 

of resin or transported from the eluant band into the eluate 

through the boundary I. Thus, 

3NdTVj = NIENd , (181) 

nvi , nien!i4 + i^h4 , (182) 
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and ( Hrp — Hip)Vj = • (183) 

The rate at which boundary I moves was given previously 

by equations 43 and 44; that is, 

= (184) 

1 + fnh4t 

and Vj — l — fNj . (185) 

When Vj and Nj are eliminated from equations 181, 189, and 

183 by means of equations 184 and 185, the following equations 

are obtained: 

(186) 

3mt(1 + ft^h ) 

^ - ^H4  ̂ ' 

NH4 - tjh (1 + fNH4 - fNH4) 

^ (187) 

hT(l + fTjjjj ) 
and EH = — —— (188) 

NH4T - %4 

where h^ = HT - . (189) 

The following equilibria occur between the eluate and 

the resin phase: 

Nd+3 + 3NH4r ^±= 3NH4 + NDP3 ; (190) 

KJ . - ** ; «191, 
ND X (EN„A)3 
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NHÎ + Ht —±= H+ + NHÎ : (192) and NH4 + Hr ri + JNti4 
r 

i H x Enh 

thus, Kp = — . ( 193 ) 
* NH4 x Eh 

When the variables E^d, Ejjjj and Ey are eliminated 

from equations 191 and 193, the following equations are 

obtained: 

- tjh 1 • frâ4 - fNH4 )3 

NdT = Nd x — j 5 — ; (194) 
3(1 + fTjH4)(NH4T - T^h4)2(NH4)3 

therefore, Nd<p = Nd x g4(NH^) ; (195) 

i4 - ?NH4(l + f^4ip - fNH4) NH4 
end hip = H x 3 ? ; ( 196) 

kf(1 " f%h4)nh4 

therefore, hip = H x g^(NH4) . ( 197) 

The variables g4(NH^) and g5(NH4) are functions of the un­

known variable NH4. 

The following equilibria are established in the eluate 

of the neodymium band: 

Nd+3 + Y~4 — NdY™ , (198) 

and Kg . jjJîâï- _ (199) 

or NdY s K(jNd x Y ; (200) 

H+ + NdY" HNdY0 ; (20l) 

and Kpj = fj x^N^y » (202) 
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or HNdY = K^KqH x Nd x Y . (903) 

Since very little EDTA goes into the resin, Yip may be 

set equal to Y^ without making too large an error. However, 

if the nature of any adsorption of EDTA by the resin is 

known, corrections could be made. 

Yt = NdY + HNdY + H4Y + H3Y + HgY , (904) 

and 

Yt = (KgNd + K^KqH x Nd + K^KgKgK^H4 + KpK^K^H3 + KjK^H^jY. 

(2.05) 

The concentrations of HY-3 and Y~4 may generally be ignored 

in the material balance at the pH involved in the rare-earth 

band. The variables Nd<p and hip may be eliminated from the 

material balance equations by means of equations 195, 189, 

and 197; then, 

NdT = Nd + NdY + HNdY ; (206) 

thus, Nd x g4(NH4) = Nd + KgNd x Y + K^KqH x Nd x Y ; (207) 

and HT = H + hT = H + HNdY + 4%Y + 3HgY + SHgY ; (208) 

thus, 

Ht + H x g5(NH4) = H + ( KjjKqH x Nd + 

+ 3kgk3k^h3 + 2k3k^h%)y . (209) 

The equation expressing the electrical neutrality of 

the eluate may be written as follows: 

NH4 + 3Nd + H = NdY + H3Y + 2H2Y ; (210) 

therefore, 
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NH4 + 3Nd + H = (KQNCI + KgKgK^H3 + 2KgK4H2)Y . (21l) 

Since equations 205, 207, 209, and 211 have only the 

unknowns H, Nd, Y, and NH4, the values of these unknowns are 

established, and the complexes may be calculated using the 

appropriate apparent constants. The composition of the eluate 

and resin phase may be calculated by using the material bal­

ance equations and the equations expressing the material bal­

ance at the boundary. 

Thus, it has been shown that the compositions of both 

phases of the regions 1, 2, 3, and 4 and the net transports 

at the various boundaries are determined by the composition 

of the eluant, the composition of the resin retaining bed, 

and the apparent equilibrium constants of the system after 

equilibrium has been established in all of the bands. 
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RESEARCH AND RESULTS OF EQUILIBRIUM STUDIES 

It has been shown In the theoretical developments dis­

cussed in this thesis that the elution system is predetermined 

by a given eluant and a given retaining bed. For the n un­

knowns in the system, n equations may be written which involve 

the concentrations of the Ions, the equivalent fractions of 

the various ions on the resin and the transport occurring at 

the si boundaries of the bands. If these equations are to be 

solved simultaneously for the various concentrations and 

equivalent fractions, it is necessary to know the apparent 

stability constants of the various complex Ions and the 

apparent equilibrium constants for the exchange of ca.tionlc 

species between the solution and resin phases. While one 

constant in an elution experiment may be calculated for each 

concentration determined experimentally, It is desirable In 

practice to check these relationships by independently deter­

mining a few of these apparent equilibrium constants by means 

of batch operations wherein the eluate has the same ionic 

strength and the resin has the same equivalent fractions as 

the equilibrium bands. 

It should be mentioned that some of the apparent con­

stants and some of the ionic species which are present in 

very low concentrations can not be calculated with great pre­

cision from elution data using the ionic concentrations 

usually measured. Since the set of equations being solved 
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involves both material balance equations and equilibrium 

equations, they do not contain exact numbers but rather 

measure quantities which are subject to experimental error. 

Therefore, in solving for low concentrations of ions or for 

apparent equilibrium constants which involve either the 

product or quotient of two or more of these quantities, the 

results are drastically influenced by the experimental error. 

The best that can be done is to obtain as precise a value as 

possible for the product or quotient of these particular 

quantities. It is best that these particular constants should 

be determined independently or taken from the literature. 

The main purpose of this thesis was to establish theoret­

ically and experimentally that equilibrium band systems could 

be maintained with various retaining resin bed compositions. 

However, it seemed desirable to determine approximately a few 

of the equilibrium constants under specific conditions in 

order to ascertain whether or not the theory was in reasonable 

agreement with the experimental results. The intriguing pos­

sibility that these systems along with the theory could be 

used for the precise determination of these constants remains 

to be established and suggests an interesting problem for 

future work. 
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Copper-Ammonium-Hydrogen-Solution-Resin Equilibria 

Six equilibrium experiments were performed as follows. 

The copper-ammonium-hydrogen-band resin was prepared by weigh­

ing three different forms of resin (copper, ammonium, and 

hydrogen) into a vessel. The air-dried resin was brought to 

equilibrium with a copper-ammonium-hydrogen-band eluate. 

Also, an appropriate volume of water which was calculated to 

be the amount imbibed by the resin in its swollen state was 

added with the eluate. Since the initial end final composi­

tions of the eluate were determined by analysis, the final 

composition of the resin could be computed by correcting the 

initial composition of the resin by the amount of copper, 

ammonium, and hydrogen removed from or transferred to the 

eluate by the resin. 

The resin used in these experiments as well as in elu-

tions 27, 28, and 29 was taken from the same sample of 

Amberlte IR-120 resin. The air-dried copper- and hydrogen-

saturated resins were each prepared in the identical manner 

described on page 26. An ammonium chloride solution was used 

to prepare the ammonium-saturated resin. After the resin had 

been washed with deionized water and sir-dried, a concentrated 

solution of sodium chloride was used to strip the ammonium ion 

from a weighed sample of the resin Into a volumetric flask. 

Then the contents of the flask were diluted to the mark, and 

allquots were analyzed to determine the equivalents of ammo-
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niurn per gram of resin (). The procedure for determining 

the equivalents of copper per gram of resin (eçu) and the 

equivalents of hydrogen per gram of resin (e%) is indicated 

on psge 27. 

ecu = 0.003497 , (212) 

6nh4 — 0.004180 , (213) 

and e# = 0.004100 . (214) 

The number of milliliters of water adsorbed by a gram 

of resin was estimated in the following manner. A weighed 

quantity of one of the three resins was added to a known 

volume of a solution having a known concentration of the 

cation with which the resin was saturated. After the resin 

and the solution were mixed together for two days, the con­

centration of the cation In the equilibrated solution was 

determined. 

The quantity of salt imbibed in the resin was estimated 

from data given by Gregor (6) for similar conditions and resin 

in both the hydrogen cycle and the ammonium cycle. Since 

copper sulfate solution was used to equilibrate the copper 

resin and appropriate data were not available In the litera­

ture, the amount of salt imbibed in the resin was determined 

experimentally by centrifuging the equilibrated solution from 

the resin phase, leaching the resin with deionlzed water, and 

determining the quantity of copper sulfate in the water. 

Since the product of the volume times the concentration 
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of the salt In the external solution before equilibration is 

equal to the sum of the salt in the resin phase and the 

product of the volume times the concentration of the salt 

after equilibration, the volume of the solution after equi­

libration may be estimated from the data indicated above. 

If the difference in the volumes before and after equilibra­

tion is divided by the grams of resin used, an estimate of 

the number of milliliters of water adsorbed per gram of resin, 

(ml/g)^, is obtained: 

It should be noted that an air-dried resin already contains 

some water before it is contacted with a solution. 

The eluate used in these equilibrations was prepared by 

performing elutlons which were very similar to the elutions 

described previously in this thesis. The difference was that 

only the homogeneous copper-ammonium-hydrogen band was used 

(3). As before, the ammonia-buffered EDTA solution was used 

as the eluant. In the central portion of the copper-ammonium-

hydro gen band, the eluate phase achieved almost complete 

equilibrium with the resin phase. Eluate samples from this 

portion of the band were combined and mixed for each elution. 

Each of these composite eluates was analyzed for the concen­

trations of ammonium ions (NH4), of the total replaceable 

and 

(ml/g)cu = 0.496 , 

(ml/g)NH4 = 0.711 , 

(ml/g)H = 0.794 . 

(215) 

(216) 

(217) 
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hydrogen (%), and of the copper in excess of the one to one 

complex with EDTA (Cue). 

Since the concentration of the total copper consists of 

that forming the one to one complex and that in excess of this 

complex, 

Cu>p = Yip + Cug • (218) 

The electroneutrality of the solution requires that 

4Yip = 2Cu|p + NH^ +• Hip . ( 219 ) 

When Cu% is eliminated from equation 219 by means of equation 

218, then the following equation is obtained which allows Y% 

to be evaluated from the data Indicated above. 

NHx + Hm 
Yt = CuE + . (220) 

Thus, Cuip may be evaluated by means of equation 218. 

A volume of v liters of this eluate and Lj liters of 

water were added to a two-liter Erlenmeyer flask containing 

GQu grams of copper-form resin, grams of ammonium-form 

resin, and G% grams of the hydrogen-form resin. The flask 

was closed with a rubber stopper and supported above the 

table top by means of a clamp and a ring stand. A type of 

magnetic stirrer was used to continually mix the solution and 

resin. It was constructed by placing a round bar magnet 

through a tight fitting hole in the top of a cork and insert­

ing the shaft of a small electric motor into a tight fitting 

hole in the center of the cork and perpendicular to the 
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magnet. The electric motor was clamped below the flask such 

that the magnet rotated in a horizontal plane just beneath 

the bottom of the flask. A small bar magnet, enclosed in 

glass tubing which was sealed at both ends, was used within 

the flask. A fan was directed on the motor to keep the motor 

from heating the flask. A commercial stirrer could not have 

been cooled so easily. The stirrer was adjusted to a rate 

which kept the contents of the flask mixing continually. 

After three days of stirring, aliquots of the eluate were 

analyzed for the ammonium concentration (NH^), the total re­

placeable hydrogen (Hip), and the copper concentration in 

excess of the one to one complex with EDTA (Cug). The value 

of Y^ and Cu^ were calculated from equations 220 and 218. 

The liters of water adsorbed by the resin are L^: 

Gçu(ml/g>Cu * &NH4(ml/g)NH4 + GH(ml/g)H 

 ̂= 1000 

The volume of the eluate just after equilibration (vx) 

is given by the following equation: 

vX = v + Lf — Lip . (222) 

The total equivalents of cations in the resin phase 

before the eluate was placed in the flask were Qrp equivalents: 

&T = GCueCu * %H4®NH4 + . (223) 

The moles of EDTA in the resin phase per equivalent of 

resin ( S4) after the resin was equilibrated with eluate are 

given by the following expression: 
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c Ymv - Yjvx 

4 = ^ • (S24) 

The equivalents of cations in the resin phase after the 

resin has reached equilibrium with the eluate (Qrp) is given 

by the following equation: 

Qip = Qip(l+4 4) . ( 225) 

Equating the sum of the equivalents of copper in the 

eluate and the equivalents in the resin before equilibrium 

to the sum of the equivalents of copper in the eluate and 

the equivalents in the resin phase after equilibrium and 

solving for the equivalents of copper in the resin phase after 

equilibrium (Qqu), the following equation is obtained: 

Qçjy = GCueCu — 2vx • Cu^i . ( 226) 

Similarly, 

QnH4 = %H4eNH4 + v • NH4 - vx • NHX , (227) 

and Qj = GHeH + v • HT - vx • Hx . (228) 

After equilibrium, the equivalents of copper per equiva­

lent of resin (Equ) is given by the following equation: 

x 
ECu • ̂  • (229) 

Similarly, 

enh4 - ̂  . (23°) 
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_ Qtj 
and Err = —y • ( 231) 

H Qt 

The data for six equilibrium experiments are given in 

Table 2. 

In the theoretical discussion, it was shown that when the 

cationic species are forced to deposit at the front boundary 

of the copper-ammonium-hydrogen band by the copper-hydrogen 

retaining bed, then the eluate comes to equilibrium with the 

resin phase in this region 3. If no copper-hydrogen retain­

ing bed is used, it takes longer for the copper-ammonium-

hydro gen band to come to equilibrium. However, if the eluate 

is initially in equilibrium with the resin phase in region 3, 

then no addition elution time will be required to achieve 

equilibrium. 

For a suitable eluant of fixed composition and for a pre­

determined leak through of ammonium at boundary II, the theory 

shows that only one composition of resin can be in equilibrium 

with the eluate such that an equilibrium band is maintained. 

Thus, the compositions of the resin end the eluate for the 

case of no transport of ammonium were calculated for the 

eluant 20 (see Table 3). In order to make these calcula­

tions, a resin bed of arbitrary composition believed to be 

near the value sought was brought to equilibrium with the 

eluant 20 by an elution experiment. The eluate from this 

experiment was then brought to equilibrium with an air-dried 
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Table 2a. Equilibrium studies on the oopper-ammonium-hydrogen band 

Exper- Eluate concentration Resin composition 
iment before equilibrium8 , before equilibrium 
no « NH4 Hrp Cug pH Y^ Cuip Lip Gtqu 

E-3 0.02192 0 .00650 0 .000543 3 .45 0 .01475 0 .01530 0 .1216 168 .50 96 .40 2 .200 
E-•4 0.02666 0 .00288 0 .000705 3 .92 0 .01548 0 .01618 0 . 1219 157 .62 107 .50 0 .2977 
E-•5 0.0274 5 0 .01256 0 .000119 3 .225 0 .02119 0 .02238 0 .1209 172.63 93 .23 1 .610 
E-•6 0.02192 0 .00650 0 .000543 3 .45 0 .01475 0 .01530 0 .1222 167 .07 97 .35 1 .473 
E--7 0.01062 0 .00472 0 .000453 3 .335 0 .008124 0 .008577 0 .1037 170 .09 92 .19 4 .834 
E-•8 0.02180 0 .00648 0 .000611 3 .45 0 .01475 0 •01536 0 .0839 131 .16 80 .15 1 .102 

av = 1,500 liters. 

Table 2b. Equilibrium studies on the copper-ammonium-hydrogen bend 

Exper­
iment 
no • 

Eluate concentration 
after equilibrium 

Resin composition 
after equilibrium 

mi Hn Cug pH Cuip E Cu 
tpX E H 

E--3 0 .02065 0 .00751 0 .000586 3 .36 0 .01467 0 .01525 0 .0006 0 . 5882. 0 .4041 0 .00771 
E. -4 0 .02724 0 .00235 0 .000763 3 .975 0 .01555 0 .01632 0 .0004 0 .5500 0 .4479 0 .00209 
E--5 0 .0274 5 0 .01197 0 .00120 3 .245 0 .02091 0 .02211 0 .0011 0 .6033 0 .3889 0 .00782 
E. -6 0 .02210 0 .00639 0 .000 588 3 .44 0 .01483 0 .01542 0 .0003 0 .5857 0 .4079 0 .00641 
E. -7 0 .01046 0 .00619 0 .000110 3 .17 0 .008445 0 .008545(0 .0000)0 .5959 0 .3862 0 .01796 
E. -8 0 .02219 0 .00634 0 .000588 3 .47 0 .014851 0 .01544 0 .0005 0 .5746 0 .4192 0 .00622 
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Table 3. Elution 24 with an eluant 0.014736 molar in EDTA 
and 0.05279 molar in total ammonium 

Theoretical 
Eluate samples from composition 

copper-ammonium-hydrogen band for no 
First Second Fifth Eighth transport 

CuE 0.000597 0.00613 0.000618 0.000619 0.00060 

HRJ 0.006 531 0.00645 0.006477 0.006482 0.00650 

NH4 0-021775 0.02179 0.02184 0.02180 0.02177 

< 0.0004 0.0004 0.0004 0.0004 0.0000 

ÏT (0-01475) (0.01473) (0.01477) (0.01476) 0.014736® 

Cu^ (0.01535) (0.01535) (0.01539) (0.01538) 0.01534 

pH 3.45 3.45 3.45 3.46 3.44 

HxlO4 4.03 4.03 4.03 3.94 4.13 

hip 0.00038 0.00030 0.00032 0.00033 0.00035 

ECu (0 . 5857) (0.5857) (0.5857) (0.5857) 0.5810 

ENH4 (0.4079) (0.4079) (0.4079) (0.4079) 0.4124 

% (0.0064) (0.0064) (0.0064) (0.0064) 0.0066 

sY<y is assumed the same as YT of the eluant. 

resin chosen to give the crudely estimated composition of the 

equilibrium resin. After equilibrium was attained, the solu­

tion was analyzed as previously and the apparent equilibrium 

constants for the various equilibria were calculated. These 

constants were then used to calculate the composition of the 

initial resin used in E-6 which was brought to equilibrium 
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with the same eluate. Again the solution was analyzed and 

more exact apparent equilibrium constants were calculated. 

Even in this case, there was a small shift from the equi­

librium expected, but the shift was small enough that the 

calculated apparent equilibrium constants would not be much 

different for the idealized case. 

Eluant 20 and the resin from experiment E-6 were used in 

an elution to ascertain whether these compositions would re­

sult in no leak through of ammonium and whether the composi­

tion of the equilibrium eluate was close to the composition 

calculated from the eluant using the apparent equilibrium 

constants in the batch equilibration experiments. The elution 

was carried out as follows. A glass column, approximately 2.2 

centimeters in diameter and 120 centimeters In length, was 

filled with part of the remaining eluate and all of the resin 

was allowed to settle through the eluate into an evenly packed 

resin bed. The eluate was allowed to flow out the bottom of 

the column until the liquid was level with the top of the 

resin bed. After carefully filling the column with eluant 20, 

the eluant was allowed to flow Into the top of the column 

while two-liter samples of the eluate were collected from the 

bottom of the column at the flow rate of one milliliter per 

minute by means of the bottle changer. 

Several of these eluate samples from the copper-ammonium-

hydrogen band were analyzed for the same components whose con-
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oentratlons were determined in the equilibrium experiments 

previously mentioned. The results are given in Tpble 3. 

Since the eluate flowing from the column has virtually 

a constant composition, there is apparently little net trans­

fer between the resin and the solution phases, and the resin 

composition in the copper-ammonium-hydrogen band remains vir­

tually the same as the initial resin composition (It is the 

final resin composition of E-6 given in Table 2). Eluant 20 

had a total ammonium concentration of 0.05279 and a total EDTA 

concentration of 0.014736. 

The apparent net equivalents of ammonium which are trans­

ported down through the upper boundary of the copper-ammonium-

hydrogen band as one liter of the eluant passes in the top of 

the column (T^ ) is given by equation 260. Table 3 shows 

that the net transport of ammonium through the boundary is 

about one-fiftieth of the ammonium concentration In the 

copper-ammonium-hydrogen eluete and is a constant value. 

Thus, this elution Indicates that these constants may be used 

to determine to better than one percent the composition of an 

equilibrium copper-ammonium-hydrogen band. 

Neodymlum-Ammonium-Hydrogen-Solution-ResIn Equilibria 

Three equilibrium experiments were performed in an exactly 

analogous manner as the equilibrium studies on the copper-

ammonium-hydrogen band. The resin for the neodymlum-ammonium-
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hydrogen band was prepared by weighing the three different 

forms of resin (neodymium, ammonium, and hydrogen) Into a 

vessel. This resin was brought into equilibrium with a 

neodymium-band eluate plus a designated number of milliliters 

of water by stirring the mixture in a closed Erlenmeyer flask. 

The final resin composition is calculated in the manner indi­

cated In the previous section. 

The ammonium- and hydrogen-form resins were the same as 

used in the equilibrium studies on the copper-ammonium-

hydro gen band. The air-dried, neodymium-form resin was pre­

pared in the manner indicated on page 26. Neodymium chloride 

was used to saturate the resin. The equivalents of neodymium 

per gram of this resin (e^d) and the milliliters of water 

taken up by a gram of this resin (ml/g)^ were determined in 

the same way as these values were obtained for the copper-form 

resin which was Indicated on pages 26, 94, and 95. 

The eluate used in equilibrium E-9 was prepared by 

combining several of the neodymium-band-eluate samples from 

elution 27, and the eluate used in equilibrium E-H was pre­

pared by combining several of the neodymium-band-eluate 

samples from elution 28. Then, equal volumes of the eluates 

used in E-9 and E-H were combined to produce the eluate used 

in E-10. The compositions of the eluates used in E-9> E-10, 

and 

®Nd = 0•003230 , 

(ml/g)%a = 0.312 . 

(232) 

(233) 
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and E-ii were calculated from the individual volumes and the 

compositions of the samples constituting the composite elu­

ates . Each of the samples from elutions 27 and 28 were 

analyzed for the concentration of ammonium (NH4), the total 

neodymium concentration (Ndrp), and the concentration of ED TA 

in excess of the one to one complex with neodymium ( YE). The 

total EDTA concentration ( Yj) and the total replaceable hydro­

gen (Hrp) may be calculated using the following equations: 

Yr = NdT + Ye (234) 

Ht = NdT + 4Ye - NH4. (235) 

The equilibration mixture was prepared in the same 

fashion as the copper-ammonium-hydrogen band batch equilibra­

tion ; that is, a volume of v liters of the eluate and Lrp 

liters of water were added to the Erlenmeyer flask containing 

the designated grams of neodymium-, ammonium-, and hydrogen-

form resin, and %» respectively. The mixture was 

agitated in exactly the same way as in the previous equi­

librium experiments. 

After equilibrium was attained, aliquots of the eluate 

were analyzed for the concentration indicated above for the 

original eluate; namely, NH*, Ndx, and Yg. The Y^ and the 

ftp are calculated by means of equations 234 and 235. 

Many of the equations used In the calculations are 

analogous to the equations used in the equilibrium section 

on the copper-ammonium-hydrogen band. 
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The volume of water adsorbed by the resin Lp is given by 

equation 221 when G-Cu(ml/g)(ju is replaced by G^tml/g)^• The 

volume of the eluate Immediately after equilibrium (vx) is 

given by equation 222. The total number of equivalents of 

cations in the resin phase before the eluate was placed in 

the flask is given by equation 223 when G(jueQu Is replaced 

by " ^he number of moles of ED TA in the resin phase 

per equivalent of resin In equilibrium with the eluate ( §4) 

is given by equation 224 and the equivalents of cations in the 

resin phase after the resin has come to equilibrium with the 

eluate (Of) are given by equation 225. The number of equiva­

lents of neodymium in the resin after equilibrium is attained 

(Qftfl) is given by the following equation: 

The number of equivalents of ammonium and hydrogen In the 

resin, after equilibrium is established, is given by equa­

tions 228 and 229, respectively. 

The number of equivalents of neodymium per equivalent of 

resin after equilibrium is established is given by the follow­

ing expression: 

The equivalents of ammonium and hydrogen per equivalent of 

resin are given by equations 230 and 231, respectively. 

The experimental data is given in Table 4. 

^Nd = %deNd + '^v ' NdT ~ '^vX ' • (236) 

(237) 
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Table 4a. Equilibrium studies on the neodymium-ammonium-hydrogen band 

Exper­
iment 
no. NH4 

E-9 0.015465 0.014995 0.001077 3.27 

E-10 0.013884 0.011710 0.002092 

E-ll 0.012308 0.008425 0.003117 3.235 

Resin composition 
, before equilibrium 

% T? %d 

0.01607 0.00384 0.0576 114.90 30-00 0.8724 

0.01380 0.00619 0.0593 108.82 34.46 1.090 

0.01164 0.00859 0.0607 102.70 38.90 1.311 

Eluate concentration 
before equilibrium 

Ndip Yg pH Yrp 

Table 4b. Equilibrium studies on the neodymium-ammonium-hydrogen band 

Exper­
iment 

Eluate concentration 
after equilibrium 

Resin composition 
after equilibrium 

no. nhi Ndîp YE >hx Y? HÇ ESc enh4 
Eg 

E-9 0.01385 0.01326 0.000828 3.37 0.01409 0.00272 0.002363 0.74125 0.95014 0.00841 

E-10 0.01295 0.01087 0.001759 3.31 0.01263 0.00496 0.001874 0.70177 0.28740 0.01083 

E-ll 0.01173 0.00804 0.002-771 3.30 0.01081 0.00740 0.00146 0.66225 0.32469 0.01306 
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Potentiometric Titrations of EDTA 

The four stability constants of ethylenediaminetetra-

acetic acid were determined at three ionic strengths. Stand­

ard solutions of a potassium salt of ethylenediaminetetra-

acetste whose ionic strengths are largely determined by a 

known amount of potassium chloride were first titrated poten-

tiometrically with standard potassium hydroxide solution to 
i i t i 

determine Kg and K4. In order to determine K^ and Kg, addi­

tional samples were titrated with standard hydrochloric acid 

solutions. (See page 54 for the definitions of K^, K^, K^, 

and ). 

The activity coefficients were determined at the various 

ionic strengths by measuring the pH of a number of standard 

hydrochloric acid solutions which were of a known ionic 

strength and contained mostly potassium chloride. The 

hydrogen-ion concentrations for the titration curves were 

determined from the pHs observed and the appropriate activity 

coefficients. 

The charge-balance equation, the EDTA-total equation, 

the ionization equation for water, and the definitions of 

K^, Kg, Kg, and K4 were used in calculating the four constants 

from the titration curve. 
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Materials 

A potassium salt of EDTA was prepared in a manner com­

pletely analogous with the procedure given in a previous sec­

tion for the preparation of (NH^JgHgY. A stock solution was 

prepared by adding 22.1 grams of this salt to a two-liter 

flask and diluting the contents to the mark. Aliquots of 

this solution were titrated with a standard zinc chloride 

solution. The concentration of EDTA in the stock solution 

was 0.02645 molar, and the subsequent titrations showed that 

the stock solution had the composition of Kg.404^1.596Y* 

The potassium chloride used in preparing a 1.00 molar 

stock solution was precipitated from a saturated solution of 

potassium chloride by the addition of concentrated hydro­

chloric acid. The precipitated salt was fused to remove the 

water. A portion of the potassium chloride was then weighed 

Into a volumetric flask, and the contents were diluted to the 

mark. 

Five solutions were prepared by pipetting aliquots of 

the potassium chloride and EDTA stock solutions into a liter 

volumetric flask and diluting the contents to the mark. The 

first solution was prepared by diluting 100 milliliters of 

each of the two stock solutions, the second by diluting 35 

milliliters of each of the two stock solutions, and the third 

by diluting 10 milliliters of each of the two stock solutions 

to 1000 milliliters. A pH meter was used to titrate 100 
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milliliter aliquots of each of these three solutions with a 

standard potassium hydroxide solution to obtain the titra­

tion curves of pH versus milliliters of base added. Also, an 

100 milliliter aliquot of the first solution was titrated 

with a standard hydrochloric acid solution. A fourth solution 

was prepared by pipetting 100 milliliters of the EDTA stock 

solution and 25 milliliters of the potassium chloride solu­

tion into a liter volumetric flask and diluting the contents 

to the mark. One hundred milliliters of the EDTA stock solu­

tion were diluted to 1000 milliliters to prepare the fifth 

solution. The pH meter was used to titrate 100 milliliter 

aliquots of the fourth and fifth solutions with a standard 

hydrochloric acid solution to determine the titration curves. 

The carbonate-free hydroxide solution was prepared by 

passing a potassium hydroxide solution through a hydroxide-

form, anion-exchange column. The hydroxide-form exchange 

column was prepared by passing a solution of sodium hydroxide 

containing barium hydroxide through the column. The barium 

hydroxide was originally added in excess to precipitate any 

carbonate ions as barium carbonate. The sodium and berium 

ions are removed subsequently by washing the column with 

deionlzed water. 

The potassium hydroxide solutions were standardized 

with potassium acid phthalate and the acid solutions were 

standardized with the potassium hydroxide solutions. 
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Apparatus 

The titrations were carried out in a double-walled titra­

tion cell. The water which was maintained at 25.00° C + 0.02° 

in a constant temperature bath was pumped through the jacketed 

compartment of the titration cell. An atmosphere of pure 

nitrogen was maintained above the liquid in the titration cell. 

The more accurate Beckman Model G-S pH meter was used 

for these titrations rather than the Beckman Model G pH meter, 

and the electrode system consisted of a fiber type saturated 

calomel electrode and a "General Purpose" glass electrode. 

Both electrodes were of the shielded type for use external to 

the pH meter. A Pyrex microburette with 0.01 milliliter sub­

divisions was used to measure the volume of potassium hydrox­

ide solution or hydrochloric acid solution used in the titra­

tions. 

Procedure 

Tne pH meter was standardized with Beckman pH 4 buffer 

for the titrations of EDTA with hydrochloric acid. Both a 

standardization with the Beckman pH 7 buffer and then stand­

ardizations with the Beckman pH 9 buffer were necessary to 

cover the complete range in the titrations with the base 

because the pH meter only covered a range of three pH units 

with each standardization. 

Since the pH as obtained from the pH meter thus stand-
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ardlzed is defined in terms of the hydrogen-ion activity, 

while hydrogen-ion concentration (H) is needed for the cal­

culations , it was necessary to correct the pH meter readings. 

The results shown in Table 5 were obtained for pH + log HCl 

where HCl represents the molar concentration of the hydro­

chloric acid in a solution whose potassium chloride concen­

tration contributes the major portion of the ionic strength. 

Table 5. pH-meter correction and the ionization constant 
of water 

V" pH + log HCl Ki x 1014 

0.00 — — 1.016 

0.01 0.048 1.244 

0.04 — — 1.446 

0.05 0.057 

0.09 1.613 

0.10 0.080 — — 

0.12 0.094 

0.16 — — 1.741 

Since the hydrochloric acid may be considered to be completely 

ionized, the hydrogen-ion concentration is equal to the molar 

concentration of the hydrochloric acid. Therefore, the value 

of pH + log HCl for the appropriate ionic strength was sub­
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tracted from the pH given by the pH meter in the titrations 

in order to obtain -log H. 

-log H = pH - (pH + log HCl) (238) 

The in Table 5 is the ionization constant of water (69). 

The titration curve of EDTA with a standard potassium 

hydroxide solution has two distinct inflection points, one 

at a = 2 and the other at a = 3, where a represents the frac­

tion of the total replaceable hydrogen which has been titrat­

ed. The inflection point at a = 1 is absent because K^ and 

Kg have about the same strength. There is no Inflection at 

a = 4 due to extensive hydrolysis of tetravalent ion. 

By definition, the potassium-ion concentration which is 

not contributed from potassium chloride is the product of a 

and Y<j. Thus the following charge balance equation is ob­

tained (see page 47 for definitions of the symbols) : 

H + aY% = OH + H3Y + 2HgY + 3HY + 4Y . (239) 

The total EDTA concentration is of course equal to the 

sum of the concentration of the individual ions. 

Yt = H4Y + H3Y + HgY + HY + Y (240) 

When the EDTA ions in equations 239 and 240 are replaced by 

functions of Y, H, K^, Kg, Kg, and K^ which are formed from 

the definitions of the four constants, and Y is eliminated 

between equations 239 and 240, then the following result is 

obtained: 
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H3KgKgK4 + 2H2K^K4 + 3HK^ + 4 

S = H4Kj_KgKgK4 + H'^KgKgK^ + H?K ̂  + HK^ + 1 (?4l) 

where a.' = a + H ~ Kw/H . (?4?) 
YT 

If the terms having H4 and are ignored, since they 

are extremely small when K4 is most important, then one ob­

tains equation 243 when the equation 241 is solved for K4. 

4 = x 
4 •/8' —-T • (?43) 

(a 1  - 3)H + (a 1  - 2)H?Kg 

It is only necessary to use a rough approximation of Kg as 

it has only a small effect on K4 in the region of a1 = 3.5. 

If the terms having H4 pre ignored, since they ere 

extremely small when Kg is most important, then one obtains 

equation 244 when equation 24l is solved for Kg. 

(3 - a') + (4 - a1) —ly 

K, - . (P44) 
(a1 - S)H H- (a' - 1)H2ks 

Only rough approximations of K^ and Kg are necessary in 

evaluating Kg in the region of a1 = 2.5. 

However, both K^ and Kg are important for the region 

a1 equal to less than 2. Therefore, K^ and Kg must be 

solved simultaneously from two points on the titration curve. 

If H = H^ when a1 = and H = Hg when a' = ag, and the terms 

of numbers 1 and 4 are ignored in equation 241 since they are 
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extremely small when K| and Kg are Important, then one obtains 

the following two equations: 

aiH!KlKs + «4 " 1,h2K? + (ai - e) • <»i - s) ïï= o 
13 

a^K'K' • (ag - DH^ + (a), . g) • - 3) -L. . 0 
H2K3 

(245) 

(246) 

The values of Kg and K^Kg are obtained by solving simul­

taneously equations 245 and 246, and K| is obtained from the 

quotient of K^Kg and Kg. In order to solve for K^ and Kg in 

this way, the points must be at the same ionic strength. 

Since the term containing K^ has only a very small effect, 

only a rough approximation of Kg is necessary. 

Results 

The values of K^, Kg, Kg, and K^ calculated for the 

three ionic strengths from the titration curves are given 

in Table 6. The Debye-Huckel Theory predicts that a plot 

of log K1 versus the square root of the ionic strength 

should give almost a straight line at low ionic strengths. 

Therefore, each of the four apparent constants were plotted 

in this fashion so that these constants could be obtained 

for any ionic strength in this range (see Table 7). These 

constants will be needed for calculations indicated in the 

next section of the thesis. 
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Table 6. Stability constants of EDTA 

K a -log H y* log KJ 

K4 

K4 

4 
Ki 
K4 
Ki 
k; 
k; 
k4 

K3 
K3 
K3 
K3 
K3 
Ki ? K 

§ 

K 
K1 

•! 
K' 
K ? 

3.2965 
3.411 
3.482 

3.309 

3.3625 

3.492 

3.149 

3.195 

3.249 

2.3965 

2.496 

2.596 

2.4005 

2.5005 

2.6005 

2.402 

2. 5015 

2.601 

1.508 

0.875 

1.508 

0.847 

1.442 

0.760 

9.889 
10.114 
10.?40 

10.080 

10.175 

10.410 

9.89 

10.040 

10.200 

5.995 

6.145 

6.305 

6.155 

6.330 
6.495 

6.266 
6.421 

6 .06  

2.880 
2.290 

2.880 
2.530 

2.940 

2.315 

0.123 
0.123 
0.1?3 

0.0419 

0.0419 

0.0419 

0.0115 

0.0115 

0.0115 

0.107 

0.107 

0.107 

0.0389 

0.0389 

0.0389 

0.0111 

0.0111 

0.0111 

0.107 

0.102 

0.107 

0.102 

0.0303 

0.0318 

10.264 
10.274 

10.272 

10.430 

10.420 

10.424 

10.675 

10.683 

10.705 

6.176 

6.149 

6.135 

6.345 

6 .328 

6.318 

6.438 

6.418 

6.424 

2.678 

2.115 

2.685 

2.109 

2.827 

2.226 

1.398 

0.720 

2.986 

2.321 

0.0057 

0.0080 

2.959 

2.218 
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Table 7. Stability constants of EDTA 

J/Â log K^ log Kg log K3 log K4 

0.100 2.24 2.92 6.45 10.70 

0.200 2.19 2.81 6.32 10.44 

0.300 2.12 2.70 6.18 10.27 
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APPARENT EQUILIBRIUM CONSTANTS 

The true thermodynamic formation constants of the com­

plex ions and molecules In the solution phase are not known. 

These constants would be products and ratios of the activ­

ities of the various ions and molecules occurring in the 

solution phase. Since the activity of an ion or a molecule 

is the product of the activity coefficient and the concentra­

tion of the species Involved, the true equilibrium constant 

may be divided by the products and ratios of the activity 

coefficients for a solution of given composition and concen­

tration, and thus a new constant will be obtained which is 

known as the apparent equilibrium constant. This can be 

readily determined experimentally from the right hand side 

of the equation which involves only the concentrations. For 

very dilute solution, the activity coefficients change with 

ionic strength in a known manner. Therefore, the apparent 

equilibrium constant for a given ionic strength may be calcu­

lated from the thermodynamic constant or the apparent con­

stant at some other low ionic strength by using the Debye-

Huckle Theory. 

In this thesis, the batch equilibrium experiments were 

designed to determine the apparent equilibrium constants in 

the concentration range which was likely to occur in the band 

elutlons. (See Table 8 for the definitions of the various 

apparent equilibrium constants.) While the data obtained 
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were not sufficient to determine the true thermodynamic con­

stants or to give plots of activity coefficients versus 

ionic strength, the data does indicate that the elution pro­

cedure with the flat type elution curves might be a powerful 

tool to determine the activity coefficients and the thermo­

dynamic constants of complex ions and complex molecules. The 

same arguments apply to the apparent ion-exchange constants 

between the ions on the resin and the ions in the solution. 

In this case, the activity coefficients of the ions on the 

resin should be very dependent on the equivalent concentra­

tion and composition of the resin phase. As the hydrated 

ions go into the resin, they take with them various amounts 

of water due to osmotic pressure. Therefore, the amount of 

water in the resin is sensitive to this equivalent ionic 

composition. Also, due to the cross-linking in the resin 

network, only a certain amount of water can enter so that the 

solution concentration of ions in the resin is high, being of 

the order of 6 to 8 normal. As is well known, solutions of 

high ionic strength have a marked effect on the activity co­

efficients. All these factors, osmotic pressure, high con­

centration, etc., will make the apparent equilibrium constants 

very sensitive to the resin composition. Here, again, the 

elution technique with flat type elution curves should pro­

vide a powerful tool for solving the very difficult problems 

connected with determining the activity coefficients of ions 
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In the resin and the true thermodynamic constants of the 

resin-solution exchange. 

Since there are three Independent variables in both the 

copper-ammonium-hydrogen band and the neodymium-ammonium-

hydrogen band, for example, yCf, EH, and Ejjh4 or EM (where 

M represents the metal ion), the apparent ion-exchange con­

stants may be a function of at least three variables. Since 

the copper-hydrogen band has two independent variables, the 

apparent ion-exchange constant Kg in this band may be a 

function of at least two variables. Due to the limited range 

of conditions under which the constants are determined in 

this thesis and to the experimental error, it Is generally 

only possible to find one variable which has much of an 

effect on each of the apparent ion-exchange constants. The 

Kp was found to be mainly a function of the equivalent frac­

tion of hydrogen ion on the resin in both the copper-ammonium-

hydrogen band and the neodymium-ammonium-hydrogen band. The 

Kg was found to be mainly a function of the ionic strength. 

The concentration of the neodymium ion was so small 

that it was not possible to calculate its concentration from 

the experimental data obtained; however, it was possible to 

eliminate this difficulty by determining the apparent con­

stant Kj/KG ratio from the data. This eliminates the neces­

sity of knowing the concentration of the neodymium Ion since 

it has been eliminated from the only two equilibrium equations 
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involving this ion and since the neodymium ion concentration 

may be set equal to zero in the charge balance and the mate­

rial balance equations without making too much of an error. 

The values of these various apparent constants are given 

In Tables 9, 10, and 11. The method used in calculating these 

constants from the equations given in the theoretical section 

is discussed in the Appendix. Although there is some differ­

ence in the constants determined by the elution and the batch 

equilibrium experiments, these differences can easily be 

accounted for by the experimental errors in determining the 

concentrations and by the simplifying assumptions made in the 

calculations. 

It is possible to predict quite closely the composition 

of the various phases under equilibrium conditions without 

performing an elution from the ion-exchange elution theory 

providing one can estimate or determine roughly the apparent 

equilibrium constants involved in the equations. Thus, beds 

which are near the equilibrium composition can be prepared so 

that it requires much less time to achieve the true equi­

librium conditions. 
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Table 8. Apparent equilibrium constants 

Copper-ammonium-hydrogen 
and copper-hydrogen bands 

Neodymium-ammonium-
hydrogen band 

K; 

Ki 

Ki 

K( 

i 
KI 

i 
KT 

Definition 

CuY 
Cu x Ï 

HCuY 
H x CuY 

HQCuY 

H x HCUY 

(NH4)2 ECu 

Cu E NH> 

H2 E 
Çu 

Cu Epj 

K '  

K G 

k h 

k-

Definltlon 

NdY 
Nd x Y 

HNdY 
H x NdY 

(NHJ3 Er, Nd 

M 

K, 

KT 

K, 

k, 

k, 

k, 

Definition 

h enh4 

nh4 eh 

h4y 

h x hgy 

h3y 

h x hgy 

HgY 

h x hy 

hy 
h x y 
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Table 9. Appsrent equilibrium constants in the copper-ammonium-hydrogen bend 

y" kb KC ECu enh4 eh Ko Kp ke 

Elution 
29 0.0356 1330 (147) 0.8436 0.1510 0 .0053 1.96 1.94 7.4 

e-3 0.0311 1520 (150) 0.5882 0.4041 0 .00771 2.62 1.25 4.1 

e-4 0.0430 1340 (145) 0.5500 0.4479 0 .00209 2.66 0.944 2.4 

e-5 0.0432 1420 (145) 0.6033 0.3889 0 .00782 2.50 1.17 3.4 

e-6 0.0334 1410 (150) 0.5857 0.4079 0 .00641 2.9? 1.19 4.15 

e-7 0.0151 1620 (162) 0.5959 0.3862 0 .01796 3.97 1.58 9.9 

e-8 0.0335 1510 (150) 0.5746 0.419? 0 .00622 9.73 1.17 3.7 
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Table 10. Apparent equilibrium constants in the copper-hydrogen band 

y" K^xlO"19 Kg Kg ECu E„ KÈ 

Elution 27 0.0082 3.46 (l730) 170 0.5275 0.4725 6.3 

Elution 28 0.0068 3.82 ( 1760) 171 0.6064 0.3936 7.62 

Elution 29 0.0090 3.28 (1720) 169 0.7583 0.2417 10.43 

Table 11. Apparent equilibrium constants in the neodymium-fimmonium-hydrogen band 

A* KqxIO"17 Kh ENd enh4 EH KF Kl/KGxl°16 KI 

Elution 27 0 .0173 1.89 55 0. 7416 0 .2512 0.00716 1 .43 2 .06 38.6 

Elution 28 0 .0153 2.09 39 0. 6638 0 .3254 0.01073 1 .52 1 .93 40.4 

E-9 0 .0151 2.11 52 0. 74125 0 .25034 0.00841 1 .025 2 .18 45.8 

E-10 0 .0148 2.15 48 0. 70177 0 .28740 0.01083 1 .12 9 .08 44.6 

E-ll 0 .0142 2.23 65 0. 66225 0 .32459 0.01306 1 .19 2 .02 44.8 
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DISCUSSION OF RESULTS 

According to the simple theory a buffered EDTA eluant 

could be used to drive a rare-earth band down a pure hydrogen 

retaining bed, but in practice this Is not feasible since the 

low solubility of the H4Y° formed in the boundary II region 

causes that acid to precipitate and plug the column. It was 

shown theoretically for each eluant that a homogeneous 

copper-hydrogen retaining bed was superior to the pure hydro­

gen bed. However, even here there was a tendency for the H^Y0 

to precipitate in the boundary region. On the other hand, if 

a narrow copper-smmonlum-hydrogen band was inserted between 

the rare-earth band and the copper-hydrogen retaining bed, 

this precipitation could be prevented. With a retaining bed 

of copper-hydrogen of the right composition for a given 

eluant, this inserted copper-ammonium-hydrogen region would 

come to equilibrium and would neither grow nor shrink as the 

bands progress down the column. Elutions 27 and 28 demon­

strated that these conditions could be achieved. Flat type 

elution curves were obtained, the length of the copper-

ammonium-hydrogen band did not change perceptibly, and the 

rate of band travel indicated that no appreciable leak 

throughs occurred through the boundary regions except the 

steady leak through of Hij and Y%. 

Theory further showed that for a given eluant, a con­

siderable range of compositions of the copper-hydrogen 
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retaining bed could be used. For each composition, a definite 

leak of ammonium in boundary I and copper and hydrogen in 

boundary III would be established and the copper-ammonium-

hydrogen band of fixed composition would grow at just the 

rate determined by these transports. Elution 29 demonstrated 

that this condition could be achieved since again flat type 

elution curves were obtained and the transports were approxi­

mately as calculated (see the Appendix). 

In the theory it was assumed that no EDTA entered the 

resin or remained in the band. Actually, any neutral species 

of EDTA such as H4Y0, HNdY0, or HgCuY0 could enter the resin 

phase and would be expected to partition themselves between 

the dilute aqueous phase of the eluate and the concentrated 

aqueous phase of the resin. However, the concentration of 

these Ions in the dilute aqueous phase is very low so that the 

amount in the concentrated resin phase should not be very 

large. 

Also, the EDTA molecule has two nitrogen atoms which 

act as hydrogen acceptors and the molecular species HgY+, 

+ 2 + •+• 
HgY , HgNdY , HgCuY , etc. may have appreciable stability 

constants. If they do, these ions should be absorbed in the 

resin in the high acid regions. If such ions exist, they 

would have to be taken Into account in the theory. This can 

be done but was not done in this thesis since experiments 

indicate that any such effect would be very small, probably 
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less than the experimental accuracy of determining some of 

the concentrations. If the effect exists, the Y^ should vary 

slightly from band to band. Actually, a small variation was 

noted, but it was only slightly greater than the experimental 

errors. Since this variation could be caused by other fac­

tors, it was felt that the dfta did not warrant the calcula­

tion of such an effect. The simple theory was able to predict 

the results to within a few per cent. Thus, it was felt that 

a careful study of this effect should be reserved for later 

investigations. 

In elution 29, it was noticed that, after the rare-earth 

eluate had remained in the flasks for a day or two, s slight 

precipitate formed in the bottom of the flasks. This indi­

cated that the Yip in eluant was probably a little high for 

the experiment and that some of the molecules in solution were 

in a supersaturated state. If this were true, there may be a 

slight invisible precipitation occurring in the rare-earth 

band ; this would cause the EDTA to accumulate in the column 

and cause a slight variation of Yj throughout the column. 

In the future Investigations, these minor side effects will 

be studied. Future experiments should have lower concentra­

tions of Yrp in the eluant. 

Attention should also be called to the fact that in 

elution 29 the top third of the elution curve was not flat. 

This could be caused by the fact that part of the band had 
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not quite reached the equilibrium state. This could be cor­

rected by eluting the bands much further down the column. On 

the other hand, the slight trailing off of the elution curve 

in the copper-ammonium-hydrogen band might be explained as 

due to a rapid reaction of copper forming a one to one complex 

with EDTA as neodymium is deposited on the resin. This is 

followed by a slow exchange of ammonium ion in solution with 

copper ion on the resin which increases the cupric ion con­

centration to its equilibrium value. If this were the case, 

then the steady state boundary region would be longer and have 

an odd shape. Longer elutions could settle this problem and 

should be studied in further Investigations. 

In addition, it might be interesting to determine the 

maximum positive and negative transport possible under various 

conditions. It might be desirable to know why these exist 

and how they might be estimated. 
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SUMMARY 

It was shown that flat elution curves were maintained 

with constant length rare-earth bands using either copper-

ammonium- hydro gen or copper-hydrogen retaining beds. However, 

when the copper-hydrogen retaining band was used, some pre­

cipitation occurred at the lower boundary region of the rare-

earth band. When the copper-ammonium-hydrogen band was used, 

a longer time was required to achieve equilibrium in this 

band. When a narrow copper-ammonium-hydro gen band was used, 

between the rare-earth and the copper-hydrogen bed, the pre­

cipitation was prevented and the "flat" equilibrium type elu­

tion curves were obtained. It was demonstrated that when a 

final retaining bed of the proper composition Is used with a 

given eluant, then the interposed band and the rare-earth band 

maintains a constant length. In addition, It was demonstrated 

that, when the final retaining bed was not compatible with 

the eluant, then the flat type elution curves were maintained 

with the interposed band growing In length and the rare-earth 

band remaining constant in length. 

A theory was developed for this elution system which is 

In agreement with these experimental results. This theory 

shows that if the composition of the eluant, the composition 

of the final retaining bed, and the apparent equilibrium con­

stants involved in the system are known, then the equilibrium, 

the material balance, and the charge balance equations can be 
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used to calculate the composition of the various phases in 

the equilibrium system and to calculate the mass transports 

that occur at the band boundaries. This theory further 

showed that for a given eluant, a considerable range of 

copper-hydrogen retaining-bed compositions could be used. 

For each composition, a definite transport of ammonium in 

the upper boundary of the interposed bed and of copper and 

hydrogen in the lower boundary would be established and the 

copper-ammonium-hydrogen band of fixed composition would grow 

at the rate determined by these transports. 

Several batch equilibrium experiments were performed in 

order to obtain apparent equilibrium constants which could be 

compared with the apparent constants obtained from the above 

indicated elution experiments. In addition, the four stabil­

ity constants of EDTA were determined for the three ionic 

strengths, 0.1, 0.04, and 0.01. These apparent constants 

were used in the elution and batch equilibrium calculations. 
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APPENDIX 

Evaluation of Apparent Equilibrium Constants 

The equilibrium constants essential for the description 

of the copper-ammonlum-hyclrogen band are more easily evaluated 

than those for any of the other bands. Therefore, the calcu­

lation of the apparent equilibrium constants with the data 

from the copper-ammonium-hydrogen band (region 3) will be 

discussed first. 

Copper-ammonium-hydrogen band 

The Kg and Kq are Important In determining the composi­

tion of the eluste (see equations 118 and 121). The Kg can be 

more accurately determined in the high pH range of the eluate 

from the copper-ammonium-hydrogen band while Kg can be deter­

mined more readily in the higher acidic range of the copper-

hydrogen band. 

When CuY is eliminated between equations 168 and 170, 

the following equation is obtained: 

K® " H (1 - b) I HKQ(9 - b) (247) 

"here b , \ - H • (848) 
Yt 

.1 
When Ka x Cu x Y is eliminated between equations 126 and 131, 

the following equation is obtained: 
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; 
k° = h*(sc - 1) + k|(sc -\)(h")2 l849)  

Cu«r - Cu* 
where c = — ± - -r- (?50) 

h{ - H - B x Y*; 

(see equations 269 and 267) . 

It is necessary to calculate the variation of KQ with 

n 
ionic strength using the Debye-Huckel theory because there 

are not enough points to establish this variation (70); thus: 

*0 ' rfw yH " VHCuï - K<= m x VHOuï (S51) 

and log KQ = log KQ + log ^ + log ^hCUY (25?) 

0.5085(2J 
where log ^ = - ±—1— . (253) 

1 + 0.328 

Therefore, log KQ = log KQ - 1.017 f (?54) 
1 + 2.6//W 

when a^ = 8 (an estimate). The symbols Y ̂  and Z^ represent 

the activity coefficient and charge, respectively, of the 

ion i. The ionic strength is represented by the symbol y«. 

Since there are enough points to evaluate the variation 

I 
of Kg with ionic strength, the a^ may be determined from the 

experimental results: 

iog  K= • iog  Kb - • (s55)  

The ionic strength of the eluate in the copper-ammonium-
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hydrogen band is given by the following equation: 

yU = + 4Cu + H +• HCuY + 4CuY) . ( 256) 

The variable NH4 may be eliminated by using equation 173, 

CuY by equation 167, and HCuY by equation 169; thus, 

yu = 3Yt - 2(Ht - H) + Cu + HgCuY . (P57) 

Since the value of HgCuY is relatively small, only an ex­

tremely small error is made in approximating HgCuY by the 

following equation (see equation 169): 

HgCuY = KQ x H x HCUY = HKQ(Ht - H) . (258) 

Therefore, /A = 3Yj - (2 - HKQ)(Hp - H) + Cug . (?59) 

The ionic strength in the copper-hydrogen band eluate is 

given by the following equation: 

ju = 1(H* + HCuY* + 4CuY* + 4CU* + HgY* + 4HgY*) . (260) 

Eliminating HCuY using equation 127, gives the following 

equation: 

yU = H* + CuY* + 3CU* + HgY* . (26l) 

The HgY* may be Ignored because it is very small. When 

H4Y*, HgY*, and HgY* are ignored in equation 131, a very 

good approximation for CuY* is obtained: 

H$ - H* 
xa = H* + + 3Cu* . (262) 

7 H*Kg + 2H*2KqKB 

The constants log KQ, log Kg, were determined by 

finding those values which allow the equations 247, 249, 254, 

255, 259, and 262 to give the best agreement with the experl-
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mental results. Thus, 

log KÙ = 3.38 - ^•°54 , ( M= 0.015 - 0.04) ; (263) 
1 + 4 .O^yW-

and 

log Kf. = 2.304 1-017 >P±_ t ( yx = 0 .007 - 0.01) . (264) 

1  +  2 . 6  J / X  

Unlike the apparent equilibrium constants for a solution, 

the apparent ion-exchange constant may be a function of sev­

eral variables. Therefore, the constant must be determined 

under the same conditions as those in which the apparent 

constant is to be used. The apparent ion-exchange constants 

Kp, Kg, and Kg (see equations 156, 154, and 108) are deter­

mined for the six equilibrium experiments and the copper-

ammonium-hydrogen band in elution 29 (see Tables 1, 2, and 

9). 

Copper-hydrogen band 

When equation 124 is subtracted from equation 126, the 

following equation is obtained: 

Cu% - Y* = CU* - (H4Y* + H3Y* + HgY*) = Cu* - A* % Y* (265) 

where A* = K^K^H*)4 + K^K^H*)3 + K^(H*)2 ; (266) 

thus,  Ï» = ** - Cf * °U* . (867) 
A* 

Equation 131 may be written as follows: 

H% _ H* = (KgK^H* + 2K^K^K^H*2)Cu x Y* + B* x Y* (268) 
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where B* = 4K^K^(H*)4 + 3Kj,KjK^( H*)3 + 2K£k^( H")2 ; (269) 

thus, H$ - H* = (KBKAH* + 2.KCKBKAH*g)(Yj - Cujj + Cu*)Cu* 

B»(yJ - Cut + Cu*) 
+ 7^ • (270) 

A* 

The equation above is quadratic with respect to Cu* and could 

be solved for Cu* if KA were known. 

The Debye-Huckel equation relating and the ionic 

strength may be derived in the same msnner es was indicated 

for the Debye-Htlckel equation for Kq. Then, 

log KA = log Ka - 0-5085(16)^" . (27l) 
1+0.328 alvÇû 

The log KA is known to be 18.8 at 0.1 ionic strength (62). 

The 0.328 a^ was estimated to be 3.0; therefore, log KA may 

be estimated in this manner, and 

log KA = 20.12 - , 8-15v^ . (272) 
1 + 3.0-/Z< 

The definition of the apparent ion-exchange constant 

was Indicated previously as 

4 = (BW) 

Cu* (Eg)2 

The values of this apparent constant were calculated from 

the data in Table 1 and are given in Table 10. 
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Neodvmlum-ammonlurn-hvdro^en band 

When equation 206 is subtracted from equation 204, the 

following equation results : 

YT - NdT = H4Y + HgY + H?Y - Na . (274) 

Thus, YE = A x Y - Nd, (275) 

and Y = Ye ̂  M . (276) 

Equation 206 may be written as follows: 

NdT = Nd + (l + HKy)NdY ; (277) 

thus, NdY = NdT ~ ̂  . (278) 
1 + HKfj 

Substitution of these values of Y and NdY into equation 

208 gives the following equation: 

HKT,(Ndm - Nd) x , 
Hm = H + —5 i_ + C(Ye + Nd) (279) 

1 + HKpj 

where 0 . f . * "W * . (?80) 
A K^KgKgK^H4 + KgKgK^H3 + KgK^H? 

Thus, Ky = H(ld- d) ( 2 Q 1 )  

HT - H - C(YE + Nd) 
where d = . ( 282) 

Nd>p - Nd 

Generally Nd Is smaller than experimental error, and Ky may 

be calculated from the data available (Tables 1 and 4). If 

necessary Ky may be corrected later for the small effect of 

the neodymium ion, Nd, by substituting its calculated value. 
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When Nd Is eliminated between equations 191 and 199, the 

following equation is obtained: 

Ki _ ("H,)3 x EM x Ï 

KG (ENH4)3 X NdY 

When Y and NdY are eliminated from the above equation by 

means of equations 278 and 276, the following equation is 

obtained: 

Ki = (MH4)3 (1 + HK')(Ye  + Ha) _ ( 2 8 4 )  

\ 3 ( &G (EwH\)3(NdT - Nd)A 

The ratio of these two constants, Kj/Kq, may be calculated 

from the data available either by Ignoring Nd or by correct­

ing for it. 

The apparent equilibrium constant may be expressed as 

a function of ionic strength by using the Debye-Huckel theory 

(see equation 199); thus, 

log % = log KQ. 0.5085(24) , (985) 
1 + 0.328 a^^5 

The value of KQ is known for 0.1 ionic strength to be 16.48 

(62). The 0.328 a^ is estimated to be 3.2; therefore, log 

KQ. may be estimated in this manner. Thus, 

log K q  = 18.4 12f2 # (286) 
1 + 3.2^/4 

The ionic strength of the eluate in the neodymium-

ammonium-hydrogen band may be written as follows: 
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= |(NH4 + H + 9Nd + NdY + HgY + 4HgY) . (287) 

When equation 210 is used to eliminate NdY and HgY, the fol­

lowing equation is obtained: 

/x = NH4 + H + HgY + 6Nd . (288) 

Equation 208 may be written as follows (see equations 

34 and 37): 

% = H + HNdY + (2 + 3Kg x H + 4KgKjH2)HgY . (289) 

Since HNdY is small, it may be approximated very well by the 

following equation: 

HNdY = HKH NdY A? HKH NdT . (290) 

When equation 289 is solved for HgY and this value is 

substituted into equation 288, the following equation is ob­

tained : 

XX = NH4 + H + HT - h - HKH NdT + GND ^ (29L) 

2 + 3KgH + 4KgK]_H2 

When NdY and Y are eliminated from equation 199 by using 

equations 278 and 276, the following equation is obtained for 

Nd: 

Nd . , (MaT-Nd)A 

KG(Ye - Nd ) ( 1 + HKH) 

The apparent constants %, K j/Kq., K%, and KP were calculated 

from the data in Tables 1 and 3 and are given in Tsble 11. 

i 
The Kj calculated at the ionic strengths of approximately 1.0 

and 0.1 were 166 and 240, respectively, when E^ is 0.70 ( 19). 

Therefore, these results show an increase in Kj with decrees-
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lng ionic strength. The value of Kj of 38 to 46 at an ionic 

strength of 0.015-0.017 and for equal to approximately 

0.70 (Table 10) shows that Kj decreases with decreasing ionic 

strength in this lower ionic strength range. However, since 

KQ. is only approximate and Kj is calculated from KJ/KQ. and KQ., 

there is some uncertainty in Kj given In Tgble 10, but prob­

ably not enough for Kj to be increasing with decreasing ionic 

strength in this lower ionic-strength range. Levin et al. 

(20) have results which are in agreement with the above be­

havior of Kj. At the lower ionic strengths, apparent con­

stants of this type showed a pronounced decrease with decreas­

ing ionic strength. 

Testing of the Interdependence of Transports 
in the Various Boundaries 

Since the three elution experiments seem to fulfill the 

conditions specified by the theory, it was decided that the 

transport of ammonium would be calculated from somewhat inde­

pendent sets of data in order to further test the validity of 

the theory. The transports are very sensitive functions of 

the experimentally determined concentrations, and any errors 

In these experimentally determined quantities will be mag­

nified in the transport calculations. 

The value of T^H^ may be calculated from the resin and 

solution composition of the neodymium-ammonium-hydrogen band 

(see equations 181, 182, and 185); that is, 
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*. • • 5 : S 
•s„ - - "c r̂1 • 
il 

The value of TNH^ may be calculated from the resin and solu­

tion compositions of the copper-ammonium-hydrogen band (see 

equations 145 and 147); that is, 

SCuT NH4 - TNH4 

II - ECu + gCuf = E + NH4f ' (295) 

and thus, 

h 2Cut(Enh. + NH4f) 
TNH4 - ™4 - Eou ̂ gCuf • (296) 

II 
Also, the expected value of T^%^ may be calculated using 

equation 178; then, 

TNH4
(ECU + 2CuTf) _ EQu + 2Cu?f fu# MLI EH + hTf \ 

ENH4 + NH4f = Eg + hjf T + NH4 X Enh4 + NH4f 

- 2CuJ . (297) 

In the case of elutions 27 and 28, the short interposed 

copper-ammonium-hydrogen band which did not grow was too small 

to allow an accurate determination of its composition. Since 

II 
TNH4> however, is primarily determined by the eluant composi­

tion and the solution and resin compositions of the copper-

hydrogen band, the accuracy of evaluting T^p^ is not greatly 

decreased• 
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Table 12 shows the results obtained by substituting the 

data from elutions 27, 28, and 29 into the three equations 

294, 296, and 297 (see Table l). The value of f hps been 

found to be approximately 0.15 liters of eluate per equiva­

lent of resin. The values of calculated for elution 27 

Table 12. The calculated values of 

Equations Elution 27 Elution 28 Elution 29 

294 +0.00024 -0.00005 +0.00710 

296 — — +0.00674 

297 +0.00017 +0.00007 +0.006513 

_ aIf the value of hj used is calculated on the basis of 
Ht expected from the value of %> in the copper-ammonium-
hydro gen band, then the calculated value of is 0.00685. 

and elution 28 are in good agreement and show no appreciable 

transport. 

The value of %jj4 for elution 29 shows a definite trans­

port across the predicted boundaries, and agreement between 

the values calculated in different ways is as good as one 

might expect from the accuracy of the experimental data used 

and the simplifying assumptions used In the calculations from 

the theory. 
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